COMPOSITE MATERIALS DESIGN

4 Micromechanical analysis of composite
materials
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Analysis Comp

Outline

 elastic deformation of anisotropic materials
 off-axis elastic constant of laminae

e elastic deformation of laminates

e stresses and distorsions
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Analysis Comp

So far we have talked on apparent homogenized properties of a
fiber reinforced lamina. Now we will examine how we can calculate
the homogeneous lamina properties from the heterogeneous
composite material constituent properties.

Micromechanics: Study of mechanical behavior of a composite
material in terms of its constituent materials”

Macromechanics: Study of mechanical behavior of a homogenized
composite material.
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Analysis Comp

Constituent Materials:

*Fiber (Graphite, boron, Silicon): Ef , of , Gf, and Vf
*Matrix (Resin): Em, o0 m,Gm Vm

Volume fraction

Vf = Fiber volume fraction = Vol. of fiber / Total volume
Vm = Matrix volume fraction = volume of matrix / Total volume

If no voids in the composites.
Then Vf + Vm = volume of composite =1
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Assumptions in Micromechanics of Composites

Analysis Comp

« The Lamina is : Macroscopically homogeneous
Linearly elastic
Macroscopically Orthotropic
Initially stress free

* The fibers are : Homogeneous
Linearly elastic
Isotropic/Orthotropic
Regularly spaced
Perfectly aligned

*The matrix is: Homogeneous
Linearly elastic
Isotropic
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Mechanics of Materials Method

Analysis Com
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Determination of E; and O}
Ecomp: EfVi+EmVm

Analysis Comp

(a) Determination of E,
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Determination of E, and O,

Analysis Comp

Determination of E, X
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Assumption: Transverse stress, 62, is same in composite, fiber, and the matrix
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Determination of Ea and O«
Analysis Comp

" If 0< <45

v

E,=EV;cos*Ql +E_V

_ 4
o, = oV cos*a +o,,V,,

If 45< <90

~l

+— |E, = (EE)/ (sin*a EV +E,_-V))
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c, = (om-cf)/ (sin*a oV, +5,,-Vy)

If a=45° 135°, 225° and 315°

E o =[(E,E) (sin*a EV+E -V, + EV; cos?a +E_V 1/ 2

c a = [(o,0y) (sin o oV, to,,'Vy) + oV, cos*a +o. V., |/ 2
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Poisson’s coeficient (V)
Analysis Comp
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Determination of V,,

Analysis Comp
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Deformation in x-way (g,) produced by y-load (O,)
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Contraction in y-way (-€2) produced by y-load (G1)
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Contraction in x-way (-€1) produced by y-load (c2)
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Determination of Va
Analysis Comp

" If 0< <45

v

v, = UVf costa +vmVm

(if =0) v, = Vf+ymVm

If 45< <90
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(if =90) v, =v,=(v1,-Egp) Eq

If a=45° 135°, 225° and 315°

v, =[(sin*a+ cos*a)- (v ,'E ) Eg+ (%V;cos*a +v V, )]/2
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Determination of G,

Analysis Comp T
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Halpin-Tsai’s Equations

Of all the micromechanics equations Halpin- Tsai's semi-empirical equations are accurate and

simple.
Halpin and Tsai showed that the Hermans solution to Hill's self consistent model can be reduced to

the approximate form
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Longitudinal Tensile Strength (F1t)
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MECHATRONICS 2007

Fiber Dominated Failure Mechanism

Fiber strength varies from

point-paint and filber to fibar,

(a) Transverse Matrix Cracking
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(b} Fiber Matrix Debond

(c) Conical Shear Fracture
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MICROMECHANICS

Analysis Comp

Exercise 1

Computer the fiber volume fraction of an unidirectional layer
with 5 tows per cm. Each tow is E-glass of 113 yield, and the
final layer thickness is 2.0 mm.

Exercise 2

Computer the fiber volume fraction of a laminate 12.7 mm
thick built with 22 layers of double bias (£45) at itched fabric
with 5 tows per cm. Each tow is E-glass of 113 yield, and the
final layer thickness is 2.0 mm.
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