
Εισαγωγικές έννοιες θεωρίας 

Συστημάτων Αυτομάτου Ελέγχου

ΜΕΡΟΣ 1ο

Π
Α

Ν
ΕΠ

ΙΣ
ΤΗ

Μ
ΙΟ

 Δ
Υ

ΤΙ
Κ

Η
Σ 

Μ
Α

Κ
ΕΔ

Ο
Ν

ΙΑ
Σ 

Π
Ο

Λ
Υ

ΤΕ
Χ

Ν
ΙΚ

Η
 Σ

Χ
Ο

Λ
Η

ΤΜ
Η

Μ
Α

 Η
Λ

ΕΚ
ΤΡ

Ο
Λ

Ο
ΓΩ

Ν
 Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Κ

Α
Ι Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Υ

Π
Ο

Λ
Ο

ΓΙ
ΣΤ

Ω
Ν

ΓΑΥΡΟΣ 
ΚΩΝ/ΝΟΣ 

2020



Γενικά

Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου

Παραδείγματα εφαρμογών Συστημάτων Ελέγχου

Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι 
οι επιπτώσεις της.

Μαθηματικό υπόβαθρο για την μελέτη των 
Συστημάτων Ελέγχου
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Τι είναι ένα Σύστημα Ελέγχου (Ορισμός)

Σύστημα αυτομάτου ελέγχου ονομάζεται ένα σύνολο

(τεχνητό ή φυσικό) στοιχείων και εξαρτημάτων κατάλληλα

συνδεδεμένα μεταξύ τους που μπορεί να ελέγχει μια διεργασία

ή ορισμένα μεταβλητά μεγέθη όπως:

θέση (x, y, z)

 ταχύτητα

 πίεση

 ηλεκτρική τάση

 θερμοκρασία κ.λ.π.Π
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Βασική Δομή Συστήματος Ελέγχου Κλειστού 

Βρόγχου

Μετατροπέας

Έξοδος OutputΕίσοδος Input

Ελεγκτής
Επενεργούν 

στοιχείο Σύστημα

Διαταραχή

Στοιχείο 

Ανάδρασης

R
y1 E

y2

C

±
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* Είσοδος (input):Μια διέγερση που εφαρμόζεται στο σύστημα 

από εξωτερική πηγή.

* Μετατροπέας (transducer): Μετατρέπει μια μορφή ενέργειας σε 

μια άλλη π.χ. μηχανική σε ηλεκτρική.
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* Ελεγκτής (Controller): Παράγει μια έξοδο που οδηγεί την 

ελεγχόμενη διεργασία με σκοπό τον μηδενισμό του σφάλματος και 

γενικά την βελτιστοποίηση των χαρακτηριστικών του συστήματος.    
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* Ελεγκτής (Controller): Παράγει μια έξοδο που οδηγεί την 

ελεγχόμενη διεργασία με σκοπό τον μηδενισμό του σφάλματος και 

γενικά την βελτιστοποίηση των χαρακτηριστικών του συστήματος.    
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* Επενεργούν στοιχείο (Actuator):Το Επενεργούν Στοιχείο είναι η 

συσκευή που αποδίδει την απαιτούμενη ενέργεια στην διεργασία (π.χ. 

η συσκευή που αναγκάζει την διεργασία να εξασφαλίσει την έξοδο).
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 Σύστημα (plant):

 Σύστημα τύπου follow-up: Τα συστήματα των οποίων η έξοδος

θα πρέπει να μεταβάλλεται σε συνάρτηση των μεταβολών του

σήματος εισόδου (π.χ. σύστημα ελέγχου θερμοκρασίας χώρου).

 Σύστημα τύπου regulator: Τα συστήματα των οποίων η έξοδος

θα πρέπει να παραμένει σταθερή ακόμα και όταν υπάρχουν

μεταβολές του σήματος εισόδου (π.χ. σταθεροποιητής τάσεως

DC).
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*Διαταραχή  (disturbance) 

-Διαταραχή είναι κάθε μη επιθυμητό σήμα που επηρεάζει την έξοδο. 

* Ανάδραση (feedback)

- Ένα σύστημα χρησιμοποιεί ανάδραση εάν η έξοδος ή μέρος της

εξόδου επιστρέφει μέσω του κλάδου ανατροφοδότησης (ανάδρασης)

στον αθροιστή/συγκριτή, έτσι που να μπορεί να συγκριθεί με την

είσοδο. Η χρήση της ανάδρασης συνήθως επιφέρει ευστάθεια και

ακρίβεια στο σύστημα.

Ελεγκτής ΔιεργασίαΕπιθυμητή 

απόκριση Εξόδου

ΈξοδοςΣύγκριση

Μέτρηση
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* Έξοδος (Output)

- Το σύστημα διεγειρόμενο από την είσοδο παράγει ένα σήμα 

εξόδου σαν απόκριση.

ζ=0

ζ=0.2

ζ=1

ζ=0.5

ζ=2

ζ=4

y(t)
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Παραδείγματα Σ.Α.Ε. 

 Αυτόματος πιλότος αεροσκαφών

 Έλεγχος θέσης ανάγνωσης κεφαλής σκληρού δίσκου 

 Σύστημα Ελέγχου Ρομποτικού βραχίονα 

 Αυτόματο Σύστημα Ελέγχου ταχύτητας οχημάτων    

 (cruise control system)
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Κατηγορίες Σ.Α.Ε. 

Τα Σ.Α.Ε. μπορούμε να τα κατατάξουμε σε κατηγορίες ως εξής:

Ανάλογα με τη φύση του μέσου ελέγχου
* Ηλεκτρικά – ηλεκτρονικά συστήματα

* Πνευματικά συστήματα

* Υδραυλικά συστήματα

* Ηλεκτροϋδραυλικά συστήματα

* Ηλεκτροπνευματικά συστήματα

Ανάλογα με το αν χρησιμοποιείται ή όχι ανάδραση

(ανατροφοδότηση)
* Συστήματα ανοιχτού βρόγχου

Έξοδος
Επιθυμητή 

απόκριση 

Εξόδου

Επενεργούν 

Στοιχείο
Διεργασία

G
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R

Έξοδος

C

C(s)
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* Συστήματα Ελέγχου Κλειστού Βρόγχου

Ανάλογα με την τεχνική επεξεργασία των σημάτων

έλέγχου
* Αναλογικά

* Ψηφιακά

Ελεγκτής ΔιεργασίαΕπιθυμητή 

απόκριση Εξόδου

ΈξοδοςΣύγκριση

Μέτρηση

( ) ( )
( )

( ) 1 ( ) ( )

C s G s
G s

R s G s H s
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G
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 
2

0dy dt y 
2 2 cos 0d y dt y 

Ανάλογα με τον τύπο των εξαρτημάτων

* Γραμμικά

- Ένα σύστημα θεωρείται γραμμικό όταν ακολουθεί την αρχή της 

επαλληλίας.

Π.χ. Αν όλες οι αρχικές συνθήκες ενός συστήματος είναι μηδενικές, δηλαδή αν 

το σύστημα είναι σε ηρεμία, τότε το σύστημα είναι γραμμικό αν έχει την 

ακόλουθη ιδιότητα: 

(α) μία είσοδος u1(t) παράγει μια έξοδο y1(t), και

(β) μία είσοδος u2(t) παράγει μια έξοδο y2(t), τότε,

(γ) η είσοδος c1u1(t)+ c2u2(t) παράγει μια έξοδο c1y1(t)+ c2y2(t), για οποιοδήποτε 

ζευγάρι εισόδων u1(t) και u2(t) και σταθερές c1 και c2.

Τα γραμμικά συστήματα μπορούν συχνά να παρασταθούν με γραμμικές 

διαφορικές εξισώσεις και γραμμικές εξισώσεις διαφοράς.

* Μη - γραμμικά

- Όλα τα υπόλοιπα είναι μη γραμμικά

Π.χ. Οι συνήθεις διαφορικές εξισώσεις και 

είναι μη – γραμμικές διότι ο όρος της πρώτης εξίσωσης είναι δευτέρου βαθμού, και ο

όρος cosy στην δεύτερη εξίσωση δεν είναι πρώτου βαθμού πράγμα που ισχύει για όλες

τις υπερβατικές συναρτήσεις.
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Ανάλογα με την εφαρμογή τους

* Σερβομηχανισμοί

* Αριθμητικά συστήματα ελέγχου

* Ακολουθιακά συστήματα Ελέγχου

*Συστήματα πολύπλοκων διεργασιών 
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Ανάλογα με την εφαρμογή τους

Σερβομηχανισμοί

Είναι εκείνα τα συστήματα ελέγχου των οποίων η έξοδος ή

ελεγχόμενη μεταβλητή είναι μηχανική θέση η ρυθμός

μεταβολής της μηχανικής θέσης (ταχύτητα ή επιτάχυνση).

Συστήματα ελέγχου ταχύτητας περιστροφής άξονα κινητήρα

DC και ελέγχου θέσεως βηματικού κινητήρα είναι

χαρακτηριστικά παραδείγματα σερβομηχανισμών.
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Ανάλογα με την εφαρμογή τους

Αριθμητικά συστήματα ελέγχου

Είναι εκείνα τα συστήματα που ενεργούν επί αριθμητικών 

δεδομένων που είναι αποθηκευμένα σε κάποιο αποθηκευτικό 

μέσο ηλεκτρονικής ή άλλης φύσεως.

Τα CNC είναι χαρακτηριστικό παράδειγμα αριθμητικού 

συστήματος ελέγχου.
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Ανάλογα με την εφαρμογή τους

Ακολουθιακά συστήματα Ελέγχου

Είναι τα συστήματα που η λειτουργία τους είναι 

προδιαγεγραμμένη και προσδιορισμένης χρονικής 

διάρκειας.
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Ανάλογα με την εφαρμογή τους

Συστήματα πολύπλοκων διεργασιών

Παραδείγματα τέτοιων συστημάτων θα μπορούσαν να είναι:

Μονάδες παραγωγής ηλεκτρικής ενέργειας, 

Μονάδες συναρμολόγησης οχημάτων, 

Μονάδες κλωστοϋφαντουργίας, 

Διυλιστήρια, 

Μονάδες βιολογικού καθαρισμού, κ.λ.π.
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Θα πρέπει να τονιστεί ότι η κατάταξη ενός

συστήματος σε μια από τις παραπάνω κατηγορίες

δεν είναι πάντα δυνατή και αυτό διότι ένα σύστημα

μπορεί να εμπεριέχει χαρακτηριστικά που θα

επέτρεπαν την κατάταξή του σε περισσότερες από

μια από τις παραπάνω κατηγορίες.

Στη συνέχεια θα ασχοληθούμε με τη μελέτη των

συστημάτων ανοικτού και κλειστού βρόγχου (όποιας

φύσεως και αν είναι αυτά), που ίσως είναι και η

κατηγορία που έχει ιδιαίτερο ενδιαφέρον, διότι

εμπεριέχει την έννοια της αυτοματοποίησης όπως

αυτή εννοείται όταν δεν παρεμβαίνει ο άνθρωπος

(συστήματα κλειστού βρόγχου).



 Κίνητρα για την χρήση ανατροφοδότησης 
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Οι κυριότεροι λόγοι για την χρήση ανατροφοδότησης είναι οι

παρακάτω:

Μείωση της ευαισθησίας σε μεταβολές των παραμέτρων

του συστήματος και των ατελειών του μοντέλου που

χρησιμοποιήθηκε στον σχεδιασμό.

Μείωση των επιδράσεων των εξωτερικών διαταραχών και

του θορύβου των αισθητήρων.

Η ανατροφοδότηση μπορεί επίσης

Να βελτιώσει τα χαρακτηριστικά της μεταβατικής

απόκρισης.

Να μειώσει το μόνιμο σφάλμα.



Παραδείγματα

Έλεγχος Ταχύτητας Περιστρεφόμενου Δίσκου

Ενισχυτής 

συνεχούς 

ρεύματος (DC)

Μονάδα Ελέγχου 

(Control Device)

Ενισχυτής 

(Amplifier)

Επιθυμητή τιμή 

ταχύτητας 

(τάση)

Επενεργούν Στοιχείο

(Actuator)

Κινητήρας 

συνεχούς 

ρεύματος (DC)

Διεργασία

Process

Περιστρεφόμενος 

δίσκος

Πραγματική 

τιμή 

ταχύτητας

(β)

(α)

ΤαχύτηταΠεριστρεφόμενος 

δίσκος

Κινητήρας συνεχούς 

ρεύματος (DC)

Μπαταρία

Ρύθμιση 

ταχύτητας

(α) Σύστημα ελέγχου ταχύτητας περιστρεφόμενου δίσκου ανοιχτού βρόγχου (χωρίς ανάδραση)

(β) Το λειτουργικό διάγραμμα του συστήματος.
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Επιθυμητή 

τιμή ταχύτητας 

(τάση)

(β)

(α)

Ταχύτητα

Ταχογεννήτρια

+
_

Ρύθμιση 

ταχύτητας

_

+

Αισθητήρας

Ταχογεννήτρια

Σήμα (τάση) 

σφάλματος

Πραγματική τιμή ταχύτητας 

τάση

Περιστρεφόμενος 

δίσκος

Ενισχυτής 

συνεχούς 

ρεύματος (DC)

Κινητήρας συνεχούς 

ρεύματος (DC)

Μπαταρία

Μονάδα Ελέγχου 

(Control Device)

Ενισχυτής 

(Amplifier)

Επενεργούν Στοιχείο

(Actuator)

Κινητήρας 

συνεχούς 

ρεύματος (DC)

Διεργασία

Process

Περιστρεφόμενος 

δίσκος

Μετρούμενη 

ταχύτητα 

(τάση)

(α) Σύστημα ελέγχου ταχύτητας περιστρεφόμενου δίσκου κλειστού βρόγχου

(β) Το λειτουργικό διάγραμμα του συστήματος.
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Περιγραφή Συστημάτων 

- Ένα σύστημα ελέγχου θα πρέπει να περιγραφεί και με

μια μαθηματική παράσταση που θα περιγράφει τη σχέση

μεταξύ εισόδου και εξόδου του συστήματος. Τα

επικρατέστερα μαθηματικά μοντέλα για την περιγραφή

συστημάτων είναι:

1. Οι ολοκληρωδιαφορικές εξισώσεις.

2. Η συνάρτηση μεταφοράς.

3. Η κρουστική απόκριση.

4. Οι εξισώσεις κατάστασης.Π
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Περιγραφή Συστημάτων 

- Έστω ότι ένα γραμμικό μη χρονικά μεταβαλλόμενο σύστημα μιας

εισόδου μιας εξόδου όπως το παρακάτω με είσοδο x(t) και έξοδο y(t)

περιγράφεται από την παρακάτω διαφορική εξίσωση.(nm)
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x(t)
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- Η Συνάρτηση μεταφοράς του Σ.Α.Ε. που περιγράφεται από την

παραπάνω διαφορική εξίσωση είναι το πηλίκο της μετασχηματισμένης

εξόδου δια την μετασχηματισμένη είσοδο με μηδενικές αρχικές συνθήκες.
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Ανάλογα συστήματα

* Μηχανικό σύστημα
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* Ηλεκτρικό ανάλογο
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Μετασχηματισμός Laplace
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• Βασικές Ιδιότητες Μετασχηματισμού Laplace
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• Μετασχηματισμοί Laplace Βασικών Συναρτήσεων
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• Ιδιότητες Μιγαδικών Αριθμών
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- Ο αντίστροφος μετασχηματισμός είναι η διαδικασία υπολογισμού της

συναρτήσεως g(t) όταν γνωρίζουμε την συνάρτηση G(s).

* Περίπτωση Διακεκριμένων Πόλων

Έστω η συνάρτηση

Γράφουμε τη συνάρτηση στην παρακάτω μορφή αφού υπολογίσουμε τις ρίζες του

παρονομαστή που ονομάζονται και πόλοι της συνάρτησης.

Υπολογίζουμε τις τιμές των συντελεστών ki από τη σχέση:

Χρησιμοποιώντας τους παραπάνω πίνακες η σχέση  γίνεται:

είναι είτε πραγματικοί είτε μιγαδικοί αριθμοί.

• Αντίστροφος Μετασχηματισμός Laplace
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* Περίπτωση πολλαπλών πόλων

- Εάν η συνάρτηση έχει πολλαπλές ρίζες (πόλους),

τότε οι συντελεστές που αντιστοιχούν στην πολλαπλή ρίζα υπολογίζονται ως εξής :

 όπου i εκφράζει την ρίζα (απλή ή πολλαπλή) της οποίας τον συντελεστή υπολογίζουμε.

 όπου j εκφράζει την θέση του συντελεστή k της πολλαπλής ρίζας με τιμές από 1 μέχρι r.

 όπου r ο αριθμός που εκφράζει την πολλαπλότητα της ρίζας.
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•Βασικές Συναρτήσεις Διέγερσης  Συστημάτων
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•Βασικές Συναρτήσεις Διέγερσης  Συστημάτων

6
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Παραδείγματα

1. Να υπολογιστεί η χρονική απόκριση της εξόδου C(t) του

εικονιζόμενου συστήματος, όταν διεγείρεται με μοναδιαία

βηματική είσοδο.
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2. Να υπολογιστεί η χρονική απόκριση της εξόδου C(t) με

μοναδιαία βηματική είσοδο
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Μετασχηματισμοί δομικών διαγραμμάτων 

3

2

1

α/α Αρχικό Διάγραμμα Ισοδύναμο Διάγραμμα
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Μετασχηματισμοί δομικών διαγραμμάτων 

6

5

4

α/α Αρχικό Διάγραμμα Ισοδύναμο Διάγραμμα
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Παράδειγμα
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Βασικά χαρακτηριστικά συστημάτων ελέγχου


Ευστάθεια

Ακρίβεια

 Ταχύτητα Απόκρισης

Ευαισθησία
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Ευστάθεια
 Ένα σύστημα είναι ευσταθές, αν για φραγμένη είσοδο η έξοδος 

είναι φραγμένη.
 Η έξοδος ενός ευσταθούς συστήματος βρίσκεται μέσα σε 

επιτρεπτά όρια.
 Η έξοδος ενός ασταθούς συστήματος αυξάνει θεωρητικά προς 

το άπειρο.
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Ακρίβεια

 Η απόκλιση μεταξύ επιθυμητής και της πραγματικής τιμής να 

είναι μηδενική.
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Ταχύτητα Απόκρισης

 Ένα σύστημα θα πρέπει να ανταποκρίνεται με ικανοποιητική

ταχύτητα στις μεταβολές του σήματος εισόδου και να οδηγεί

την έξοδο σε μια σταθερή τελική τιμή σε εύλογο χρονικό

διάστημα.
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Ευαισθησία

 Η ευαισθησία είναι η μέτρηση του πόσο εύκολα μεταβάλλεται η
έξοδος ενός συστήματος σε μεταβολές των παραμέτρων του ίδιου
του συστήματος όπως και σε πιθανές εξωτερικές διαταραχές.
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Τύποι συστημάτων και σταθερές σφαλμάτων
Το παρακάτω σύστημα ελέγχου κλειστού βρόγχου έχει συνάρτηση
μεταφοράς:

( ) ( )
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Η συνάρτηση μεταφοράς ανοικτού βρόγχου είναι:

όπου r ο αριθμός των μηδενικών ριζών του πολυωνύμου του παρονομαστή της 
συνάρτησης.

*Ένα σύστημα ονομάζεται τύπου r αν έχει r πόλους στο σημείο s=0.
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To σφάλματος δίνεται από τη σχέση:

Το σφάλμα στη μόνιμη κατάσταση ορίζεται από τη σχέση:

Ορίζουμε:

Σταθερά σφάλματος θέσης την τιμή:

Σταθερά σφάλματος ταχύτητας την τιμή:

Σταθερά σφάλματος επιτάχυνσης την τιμή:

( )
( )

1 ( ) ( )

R s
E s

G s H s




0
lim ( ) lim ( )ss
t s

e e e t sE s
 

  

0
lim ( ) ( )P
s

K G s H s




0
lim ( ) ( )v
s

K sG s H s




2

0
lim ( ) ( )a
s

K s G s H s




Π
Α

Ν
ΕΠ

ΙΣ
ΤΗ

Μ
ΙΟ

 Δ
Υ

ΤΙ
Κ

Η
Σ 

Μ
Α

Κ
ΕΔ

Ο
Ν

ΙΑ
Σ 

Π
Ο

Λ
Υ

ΤΕ
Χ

Ν
ΙΚ

Η
 Σ

Χ
Ο

Λ
Η

ΤΜ
Η

Μ
Α

 Η
Λ

ΕΚ
ΤΡ

Ο
Λ

Ο
ΓΩ

Ν
 Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Κ

Α
Ι Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Υ

Π
Ο

Λ
Ο

ΓΙ
ΣΤ

Ω
Ν

ΓΑΥΡΟΣ 
ΚΩΝ/ΝΟΣ 

2020



Γραφική αναπαράσταση μονίμου σφάλματος συστήματος ελέγχου για 

συγκεκριμένες συναρτήσεις εισόδου και τύπους συστημάτων
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Οι τιμές των σφαλμάτων για τις περιπτώσεις της κύριας
διαγωνίου της παραπάνω γραφικής απεικόνισης που δίνεται
σε μορφή πίνακα 3Χ3 είναι οι εξής:

1. Είσοδος και σύστημα τύπου 0

2. Είσοδος και σύστημα τύπου 1

3. Είσοδος και σύστημα τύπου 2
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54

Παράδειγμα

1. Να υπολογιστούν: 

α)  Η σταθερά σφάλματος θέσεως και το σφάλμα θέσης . 

β)  Η σταθερά σφάλματος ταχύτητας και το σφάλμα ταχύτητας. 

γ)  Η σταθερά σφάλματος επιτάχυνσης και το σφάλμα επιτάχυνσης. 
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Χρονική απόκριση συστημάτων 1ης  & 2ης τάξης

* Εισαγωγικές έννοιες και ορισμοί

Με τον όρο χρονική απόκριση ενός συστήματος, εννοούμε
τη συμπεριφορά του συστήματος συναρτήσει του χρόνο όταν
διεγείρεται από μία συγκεκριμένη είσοδο.

Η χρονική απόκριση ενός συστήματος ελέγχου αποτελείται
από δύο μέρη:

Τη μεταβατική απόκριση (transient response) και

Την απόκριση μόνιμης κατάστασης (steady state response).

Αν c(t) ονομάσουμε την απόκριση του συστήματος (έξοδος) τότε έχουμε:

c(t) = ct(t) + css(t)

όπου:       ct(t) = απόκριση μεταβατικής κατάστασης.

css(t) = απόκριση μόνιμης κατάστασης.
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* Συστήματα πρώτης τάξης

Ας θεωρήσουμε το δομικό διάγραμμα του συστήματος 1ης τάξης
του παρακάτω σχήματος

Η συνάρτηση μεταφοράς θα είναι της μορφής:

όπου Τ είναι η σταθερά χρόνου του συστήματος.
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*Απόκριση συστήματος πρώτης τάξης σε διέγερση μοναδιαίας βαθμίδας

Η απόκριση του συστήματος για είσοδο της μορφής r(t) = u(t) ή R(s)=1/s

θα είναι:
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*Απόκριση συστήματος πρώτης τάξης σε διέγερση μοναδιαίας

βαθμίδας

Στο παρακάτω σχήμα απεικονίζεται η καμπύλη της απόκρισης 

C(t), για σταθερές χρόνου T1 < Τ2 < T3. 
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Η έξοδος ανεβαίνει εκθετικά από την τιμή 0 προς την τελική τιμή 1.

Η αρχική κλίση της καμπύλης στον χρόνο t=0 δίνεται από τη

σχέση:

και η τιμή της εξόδου για t =Τ

όπου η Τ είναι η σταθερά χρόνου του συστήματος ή ταχύτητα

απόκρισης.
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Χρόνος ανόδου tr

Εάν t1 είναι ο χρόνος στον οποίο η έξοδος έχει φτάσει στο 

10% της τελικής της τιμής και t2 ο χρόνος στον οποίο η έξοδος 

έχει φτάσει στο 90% της τελικής τιμής τότε:
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Χρόνος αποκατάστασης ts 2%

Είναι ο χρόνος στον οποίο η έξοδος του συστήματος 

διαφέρει από την τελική της τιμή κατά 2%. Επομένως:

1 1 0,02 0,02 ln ln(0,02)

ln ln(0,02) 4 4
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t

c(t)

Μόνιμο σφάλμα

r(t)=t

c(t)

T

* Απόκριση συστήματος πρώτης τάξης σε διέγερση μοναδιαίας

αναρρίχησης

Η απόκριση του συστήματος για είσοδο της μορφής r(t) = t θα
είναι:

Η αντίστοιχη γραφική παράσταση φαίνεται παρακάτω.
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0 t

C(t)
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* Κρουστική απόκριση συστήματος πρώτης τάξης

Η απόκριση του συστήματος για είσοδο της μορφής r(t)=δ(t) θα
είναι:

Η καμπύλη της κρουστικής απόκρισης απεικονίζεται παρακάτω. 
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* Συστήματα δεύτερης τάξης

Ας θεωρήσουμε το δομικό διάγραμμα του συστήματος 2ης τάξης του
παρακάτω σχήματος

R(s) Υ(s)

2

2 22

n

n ns s



  

2

2 2

( )
( )

( ) 2

n

n n

Y s
T s

R s s s



 
 

 

Η συνάρτηση μεταφοράς είναι της μορφής:

Η χαρακτηριστική εξίσωση του συστήματος είναι:

Οι πόλοι της T(s) είναι οι ρίζες της χαρακτηριστικής εξίσωσης 

δηλαδή:                                                ή

2 22 0n ns s   

2

1,2 1n ns      
2

1,2 1n ns j     



0 1  1,2 n ns j    

0  1,2 ns j 

1,2 ns  

1 
1,2 n ns     

21  
2 1  

1 

21d n   

Υπό-απόσβεση 

Χωρίς απόσβεση

Κρίσιμη απόσβεση 

Υπέρ-απόσβεση 

Όπου   

Ο συντελεστής ζ ονομάζεται συντελεστής απόσβεσης

του συστήματος (damping ratio) και το ωn κυκλική

ιδιοσυχνότητα (natural frequency ) χωρίς απόσβεση.
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ΑΠΟΚΡΙΣΗ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

1)Υπό-απόσβεση (0 < ζ < 1)

Στην περίπτωση όπου 0 < ζ < 1 η χαρακτηριστική εξίσωση έχει

δυο ρίζες συζυγείς μιγαδικές.

Η χρονική απόκριση είναι της μορφής:

όπου: ή και

Ο συντελεστής ωd ονομάζεται κυκλική ιδιοσυχνότητα του

συστήματος με απόσβεση (damped natural frequency).
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Η χρονική απόκριση είναι της μορφής:

1 2 ns s   

( ) 1 (1 )nt

nc t e t
 

  

2) Κρίσιμη απόσβεση (ζ = 1)

Στην περίπτωση που ζ=l η χαρακτηριστική εξίσωση έχει δύο 

ρίζες πραγματικές ίδιες με τιμή:
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Η χρονική απόκριση είναι της μορφής:

2

1,2 1n ns      

2 2( ) 1 cosh( 1 ) sinh( 1 )nt

n nc t e t t
           

 

3) Υπέρ-απόσβεση (ζ > 1)

Στην περίπτωση όπου ζ > 1 η χαρακτηριστική εξίσωση 

έχει δύο ρίζες πραγματικές με τιμές:
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4) Μηδενική απόσβεση (ζ = 0)

Στην περίπτωση όπου ζ = 0 η χαρακτηριστική εξίσωση έχει δύο 

ρίζες συζυγείς φανταστικές:

Η χρονική απόκριση είναι της μορφής:

1,2 ns j 

( ) 1 cos nc t t 
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Χρονική απόκριση συστήματος δεύτερης τάξης σε διέγερση

μοναδιαίας βηματικής συνάρτησης για διάφορες τιμές του

συντελεστή απόσβεσης ζ. Ο οριζόντιος άξονας είναι σε radians

και αναπαριστά το χρόνο πολλαπλασιασμένο με την φυσική

συχνότητα ωn του συστήματος.
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Χαρακτηριστικά μεγέθη χρονικής απόκρισης ευσταθούς 

συστήματος που διεγείρεται με σήμα μοναδιαίας βηματικής 

συνάρτησης

Στα πρακτικά συστήματα ελέγχου η μεταβατική απόκριση εμφανίζει 

αποσβενόμενες ταλαντώσεις, προτού φθάσει στη μόνιμη κατάσταση 

(παρακάτω σχήμα).
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p

d

t





 Χρόνος καθυστέρησης td (delay time): Ο χρόνος που

χρειάζεται για να φθάσει η απόκριση, για πρώτη φορά, το 50%

της τελικής της τιμής.

 Χρόνος ανύψωσης tr (rise time): Ο χρόνος που χρειάζεται για

να ανέλθει η απόκριση από το 10% στο 90% της τελικής της

τιμής και δίνεται από τη σχέση:

 Χρόνος κορυφής tp (peak time): Ο χρόνος που χρειάζεται για

να φθάσει η απόκριση στην πρώτη κορυφή της καμπύλης και

είναι:
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Χρόνος αποκατάστασης ts (settling time): Ο χρόνος που χρειάζεται

για να φθάσει και να παραμείνει η καμπύλη απόκρισης ανάμεσα

στο ±2% ή ±5% της τελικής τιμής.

Με κριτήριο ζώνης το 2% είναι:

Με κριτήριο ζώνης το 5% είναι:

Μέγιστη υπερύψωση Mp (maximum percent overshoot): Η διαφορά

της μέγιστης τιμής cm και της τελικής τιμής έστω cf της c(t). Το

ποσοστό υπερύψωσης ορίζεται:

όπου:

Μέγιστη τιμή της απόκρισης Cm: Η τιμή της απόκρισης στην πρώτη 

κορυφή της καμπύλης είναι:
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1. Σύστημα με συνάρτηση μεταφοράς συνδέεται σε

σειρά με ελεγκτή με συνάρτηση μεταφοράς . Να

υπολογιστεί η συνάρτηση μεταφοράς του συστήματος κλειστού

βρόγχου με μοναδιαία αρνητική ανάδραση, καθώς επίσης τα μεγέθη

αυτής: ωd, ζ, ωn , υπερύψωση M.O%.
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2. Σύστημα κλειστού βρόγχου με μοναδιαία αρνητική ανάδραση

έχει συνάρτηση μεταφοράς και συνδέεται με αντισταθμιστή

σειράς με συνάρτηση μεταφοράς . Να εκλεγεί κατάλληλη

τιμή για την παράμετρο α, έτσι ώστε το ποσοστό υπερύψωσης της

αντίστοιχης βηματικής απόκρισης να είναι 5%.
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R(s) +

+

Y(s)

3. Να υπολογιστεί η ΣΜ και η χρονική απόκριση y(t) του ΣΚΒ 

με μοναδιαία είσοδο ράμπας (r(t)=t).
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4. Για σύστημα με Σ.Μ.

και αναλογικό (Ρ) ελεγκτή σειράς με Σ.Μ.

και μοναδιαία αρνητική ανάδραση.

Α) Να σχεδιάσετε το διάγραμμα βαθμίδων.

Β) Να υπολογιστεί η χρονική απόκριση της εξόδου του Σ.Κ.Β., με μοναδιαία 

βηματική είσοδο για k=100.

Γ) Να υπολογιστεί ο χρόνος μεγίστου της παραπάνω χρονικής απόκρισης.
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Σχέση μεταξύ της θέσης των πόλων και των μηδενικών στο πεδίο-s
και την αντίστοιχη απόκριση στο πεδίο του χρόνου.
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Όπως φαίνεται στα
σχήματα η θέση των πόλων
στο μιγαδικό επίπεδο
σχετίζεται άμεσα με τη
χρονική απόκριση του
συστήματος. Στο (a)
φαίνεται η θέση των πόλων
στο μιγαδικό επίπεδο, στο
(b) φαίνεται η χρονική
απόκριση κατά μήκος του
άξονα jω2 του μιγαδικού
επιπέδου, στο (c) φαίνεται η
χρονική απόκριση κατά
μήκος του άξονα jω1 και
στο (d) φαίνεται η χρονική
απόκριση του συστήματος
του οποίου οι πόλοι
βρίσκονται πάνω στον
αρνητικό ημιάξονα.
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 Ένα από τα βασικά πρακτικά προβλήματα της επιστήμης των

συστημάτων αυτομάτου ελέγχου είναι η σχεδίαση ενός

συστήματος τέτοιου ώστε:
 η έξοδός του συστήματος να "ακολουθεί" την είσοδό του, όσο

γίνεται πιο πιστά.

 Τα ασταθή συστήματα δεν μπορούν να μας εξασφαλίσουν μία

τέτοια συμπεριφορά και επομένως δεν είναι χρήσιμα.

 Γι’ αυτό, κατά τη σχεδίαση ενός συστήματος αυτομάτου

ελέγχου, επιδιώκεται πρώτα και πάνω απ' όλα η εξασφάλιση

της ευστάθειας του συστήματος.

 Μετά την εξασφάλιση της ευστάθειας επιδιώκεται η

ικανοποίηση άλλων απαιτήσεων σχεδίασης, όπως η ταχύτητα

και η ακρίβεια απόκρισης, το εύρος ζώνης, το σφάλμα στη

μόνιμη κατάσταση, κ.λπ..
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Ένα σύστημα είναι ευσταθές, αν για φραγμένη είσοδο η έξοδος 
είναι φραγμένη. Η έξοδος ενός ευσταθούς συστήματος βρίσκεται 
μέσα σε επιτρεπτά όρια ενώ η έξοδος ενός ασταθούς συστήματος 

αυξάνει θεωρητικά προς το άπειρο.
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Από θεωρητικής πλευράς, η έννοια της ευστάθειας

έχει μελετηθεί σε βάθος και έχουν προταθεί διάφοροι

ορισμοί και κριτήρια ευστάθειας.

Π.χ. για την κατηγορία των γραμμικών μη χρονικά

μεταβαλλόμενων συστημάτων, ισχύει το πολύ γνωστό

γεγονός, ότι η ευστάθεια συνδέεται με τη θέση των

ριζών της χαρακτηριστικής εξίσωσης στο μιγαδικό

επίπεδο.

Στην περίπτωση αυτή, ένα σύστημα είναι ευσταθές

αν όλες οι ρίζες της χαρακτηριστικής εξίσωσης

βρίσκονται στο αριστερό μιγαδικό ημιεπίπεδο. Αν

έστω και μια ρίζα της χαρακτηριστικής εξίσωσης

βρίσκεται στο δεξιό μιγαδικό ημιεπίπεδο, το

σύστημα είναι ασταθές.
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Τα γνωστότερα είναι:

1) Το κριτήριο Routh,

2) Γεωμετρικού Τόπου Ριζών (Γ.Τ.Ρ)

3) Bode

4) Nyquist, κ.λ.π.

Υπάρχουν κριτήρια ευστάθειας που μας 

βοηθούν να διαπιστώσουμε για ποιες τιμές 

των παραμέτρων έχουμε ευστάθεια.
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Γεωμετρικός Τόπος Ριζών

Ο (Γ.Τ.Ρ) είναι μια γραφική απεικόνιση των θέσεων των πόλων
(ρίζες της Χ.Ε) του συστήματος κλειστού βρόγχου στο μιγαδικό
επίπεδο-s, για όλες τις τιμές της παραμέτρου Κ (κέρδος) του
συστήματος.

Είναι γνωστό ότι οι θέσεις των πόλων της συνάρτησης μεταφοράς
στο μιγαδικό επίπεδο επηρεάζουν τη μεταβατική απόκριση του
συστήματος καθώς και την ευστάθειά του.

Για το σύστημα κλειστού βρόγχου όπως αυτό εικονίζεται στο
σχήμα που ακολουθεί ισχύουν οι παρακάτω σχέσεις:
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Συνάρτηση Μεταφοράς του Συστήματος (Σ.Μ.)

Συνάρτηση Μεταφοράς (Σ.Μ.) του Κλάδου Δράσης

Συνάρτηση Μεταφοράς (Σ.Μ.) του Κλάδου Ανάδρασης

Συνάρτηση Μεταφοράς (Σ.Μ.) Ανοιχτού Βρόγχου

Χαρακτηριστικό Πολυώνυμο

Χαρακτηριστική Εξίσωση
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Αν η συνάρτηση μεταφοράς (Σ.Μ) ανοικτού βρόγχου είναι της
μορφής:

τότε η Σ.Μ του συστήματος θα είναι:

από την παραπάνω σχέση παρατηρούμε ότι η μεταβολή των
τιμών της παραμέτρου Κ επηρεάζει τις τιμές των ριζών της Χ.Ε
του συστήματος με αποτέλεσμα τη μετατόπισή τους πάνω στο
μιγαδικό επίπεδο. Αυτό μας επιτρέπει να δημιουργήσουμε ένα
διάγραμμα πάνω στο μιγαδικό επίπεδο που θα είναι το σύνολο
των σημείων που θα είναι ρίζες της Χ.Ε. του συστήματος αν η
παράμετρος Κ πάρει όλες τις τιμές από το 0 μέχρι το +.

Το διάγραμμα που προκύπτει όταν το Κ πάρει τιμές μεταξύ
του - και του μηδενός ονομάζεται συμπληρωματικός Γ.Τ.Ρ..
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Από την Χ.Ε προκύπτουν τα παρακάτω:

Συνθήκη φάσης για το Γ.Τ.Ρ.

Συνθήκη μέτρου για το Γ.Τ.Ρ.

Η παραπάνω σχέση μας επιτρέπει να υπολογίσουμε την τιμή της
παραμέτρου Κ πάνω στο διάγραμμα.
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* Κανόνες Προσεγγιστικής Χάραξης του Γ.Τ.Ρ.

1. Οι πόλοι της είναι τα σημεία εκκίνησης του Γ.Τ.Ρ.

2. Τα μηδενικά (zeros) της και το άπειρο όταν m<n είναι τα
σημεία λήξης του Γ.Τ.Ρ.

3. Ο αριθμός των κλάδων του τόπου ριζών ισούται με το max(m,n) όπου
m είναι το πλήθος των μηδενικών και n είναι το πλήθος των πόλων της

4. Ο Γ.Τ.Ρ. είναι συμμετρικός ως προς τον άξονα των πραγματικών
αριθμών.

5. Το σημείο τομής των ασύμπτωτων ευθειών με τον άξονα των
πραγματικών αριθμών δίδεται από την σχέση.

όπου = το άθροισμα των τιμών των πόλων της

όπου = το άθροισμα των τιμών των μηδενικών της
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6 Οι γωνίες που σχηματίζουν οι ασύμπτωτες με τον πραγματικό άξονα
δίνεται από τη σχέση.

όπου ((n-m)-1) είναι η τελευταία τιμή του μ.

7. Ένα τμήμα του άξονα των πραγματικών αριθμών μπορεί να είναι
τμήμα του Γ.Τ.Ρ. αν το πλήθος των πόλων και των μηδενικών που
βρίσκονται δεξιά του τμήματος είναι περιττό. (για K0).

8. Τα σημεία αποχωρισμού και άφιξης των κλάδων από και προς τον
οριζόντιο άξονα ονομάζονται σημεία θλάσης του Γ.Τ.Ρ. και
υπολογίζονται από τις παρακάτω σχέσεις:

ή

κάθε ρίζα της παραπάνω εξίσωσης αποτελεί ένα δεκτό σημείο
θλάσης αν είναι ταυτόχρονα και ρίζα της Χ.Ε. του συστήματος για
κάποια τιμή του Κ.
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9. Οι γωνίες αναχώρησης του Γ.Τ.Ρ. από μιγαδικό πόλο ή άφιξης σε
μιγαδικό μηδενικό υπολογίζονται από τη σχέση:

όπου:

= το αλγεβρικό άθροισμα των γωνιών που σχηματίζουν οι     

πόλοι ως προς τον αναφερόμενο μιγαδικό πόλο (μηδενικό)

= το αλγεβρικό άθροισμα των γωνιών που σχηματίζουν

τα μηδενικά ως προς τον αναφερόμενο μιγαδικό πόλο
(μηδενικό).

Τα σημεία τομής του Γ.Τ.Ρ. με τον άξονα των φανταστικών αριθμών είναι
τα σημεία όπου το σύστημα μεταπίπτει από την ευστάθεια στην
αστάθεια.

Οι τιμές του Κ και του ω για τα σημεία αυτά, ονομάζονται κρίσιμο
κέρδος (Kcr ) και κρίσιμη συχνότητα (ωcr ) αντίστοιχα.
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* Κριτήριο Routh

Το κριτήριο ευστάθειας Routh, προσδιορίζει τον αριθμό των
πόλων της συνάρτησης μεταφοράς κλειστού βρόχου που βρίσκονται στο
δεξιό μιγαδικό ημιεπίπεδο-s και δίνει απάντηση στο ερώτημα:

«είναι το σύστημα ευσταθές;», χωρίς να προσδιορίζει τη σχετική
ευστάθεια του συστήματος όπως συμβαίνει με άλλα κριτήρια όπως του
Γ.Τ.Ρ. που είδαμε προηγουμένως.

Ας θεωρήσουμε ότι η Χ.Ε της συνάρτησης μεταφοράς
του συστήματος έχει την παρακάτω γενική μορφή:

όπου όλοι οι συντελεστές στο R και είναι 0

Εφ' όσον όλοι οι συντελεστές είναι ΟΜΟΣΗΜΟΙ, σχηματίζουμε τον

παρακάτω πίνακα του Routh.
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υπολογίζονται ως εξής:
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Πίνακας Routh

Σύμφωνα με το ΚΡΙΤΗΡΙΟ του Routh για να είναι ευσταθές ένα
σύστημα πρέπει οι όροι της πρώτης στήλης του πίνακα Routh να
είναι ΟΜΟΣΗΜΟΙ.

Ο αριθμός των ριζών της Χ.Ε που βρίσκονται στο δεξιό
ημιεπίπεδο s ισούται με τον αριθμό αλλαγών του πρόσημου των
συντελεστών της πρώτης στήλης του πίνακα Routh.
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Ειδικές περιπτώσεις για την συμπλήρωση του πίνακα Routh

α. Όταν ένας όρος της πρώτης στήλης είναι μηδέν, ενώ οι υπόλοιποι όροι της

σειράς είναι διάφοροι του μηδενός ή δεν υπάρχουν, τότε, αντικαθίσταται ο

μηδενικός όρος, από ένα πολύ μικρό αριθμό ομόσημο με τους προηγούμενους

της πρώτης στήλης, και συνεχίζεται η ανάπτυξη του πίνακα.

β. Όταν όλοι οι όροι μίας σειράς του πίνακα Routh είναι μηδενικοί, ο πίνακας

συμπληρώνεται με την τοποθέτηση, αντί των μηδενικών όρων με τους όρους

της παραγωγισμένης βοηθητικής εξίσωσης της αμέσως προηγούμενης σειράς.

γ. Όταν τουλάχιστον δύο σειρές έχουν μηδενικούς όρους, τότε το σύστημα

είναι ασταθές και το χαρακτηριστικό πολυώνυμο έχει δύο αντίθετους

πραγματικούς πόλους με πολλαπλότητα 2.

δ. Για την εύρεση της κρίσιμης (οριακής) τιμής του Κ για ευστάθεια αρκεί να

μηδενιστεί ο όρος της σειράς s1 και να λυθεί η εξίσωση ως προς Κ=Κcr.

ε. Για την εύρεση της οριακής συχνότητας ταλαντώσεων του συστήματος αρκεί

να λυθεί η βοηθητική εξίσωση της σειράς s2 ως προς ω=ωcr. Αυτή θα έχει τη

μορφή: όπου οι συντελεστές της σειράς s2 και όπου k θα

τεθεί η τιμή Κcr που βρέθηκε .

01
2  nn s  1, nn 



Παράδειγμα 1 :Κριτήριο Routh-Hurwitz

Χαρακτηριστική εξίσωση 0201256 2345  sssss
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Παράδειγμα 2 :Κριτήριο Routh-Hurwitz
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Να σχεδιαστεί ο Γ.Τ.Ρ του εικονιζόμενου συστήματος κλειστού 

βρόγχου.
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Κανένα μηδενικό.
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ΤΟΥΣ ΠΟΛΟΥΣ ΜΕ (x) ΚΑΙ ΤΑ ΜΗΔΕΝΙΚΑ ΜΕ (ο).
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ΒΗΜΑ 2ο : Ένα τμήμα του άξονα των πραγματικών αριθμών 

μπορεί να είναι κλάδος του Γ.Τ.Ρ. αν το πλήθος των πόλων και 

των μηδενικών που βρίσκονται δεξιά του κλάδου είναι 

περιττό. (για K0).

Π
Α

Ν
ΕΠ

ΙΣ
ΤΗ

Μ
ΙΟ

 Δ
Υ

ΤΙ
Κ

Η
Σ 

Μ
Α

Κ
ΕΔ

Ο
Ν

ΙΑ
Σ 

Π
Ο

Λ
Υ

ΤΕ
Χ

Ν
ΙΚ

Η
 Σ

Χ
Ο

Λ
Η

ΤΜ
Η

Μ
Α

 Η
Λ

ΕΚ
ΤΡ

Ο
Λ

Ο
ΓΩ

Ν
 Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Κ

Α
Ι Μ

Η
Χ

Α
Ν

ΙΚ
Ω

Ν
 Υ

Π
Ο

Λ
Ο

ΓΙ
ΣΤ

Ω
Ν

ΓΑΥΡΟΣ 
ΚΩΝ/ΝΟΣ 

2020



1 2 3 0 1 2
1

3 0 3
a

p p p


   
   



 2 1 180o

l
n m








0,1, 2, ( 1)n m   

i i

n m
a

p z

n m







 

 

 

 

0

0

0

0

0

1

0

0

2

180 2 0 1
60

3 0

180 2 1 1
180

3 0

180 2 2 1
300

3 0







  
 


  

  


  
 



ΒΗΜΑ 3o: Υπολογισμός των ασύμπτωτων
Π

Α
Ν

ΕΠ
ΙΣ

ΤΗ
Μ

ΙΟ
 Δ

Υ
ΤΙ

Κ
Η

Σ 
Μ

Α
Κ

ΕΔ
Ο

Ν
ΙΑ

Σ 
Π

Ο
Λ

Υ
ΤΕ

Χ
Ν

ΙΚ
Η

 Σ
Χ

Ο
Λ

Η
ΤΜ

Η
Μ

Α
 Η

Λ
ΕΚ

ΤΡ
Ο

Λ
Ο

ΓΩ
Ν

 Μ
Η

Χ
Α

Ν
ΙΚ

Ω
Ν

 Κ
Α

Ι Μ
Η

Χ
Α

Ν
ΙΚ

Ω
Ν

 Υ
Π

Ο
Λ

Ο
ΓΙ

ΣΤ
Ω

Ν

ΓΑΥΡΟΣ 
ΚΩΝ/ΝΟΣ 

2020



4226057741

0263

21

2

.s,.s

ss





  

sssK

sss
)s(H)s(G

K

23

21
1

23 






0
ds

dK

ΒΗΜΑ 4o: Υπολογισμός σημείου αποχώρησης
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Για ποιές τιμές του K το σύστημα είναι ευσταθές ?

ΒΗΜΑ 5o: Υπολογισμός Κcr και ωcr με το κριτήριο

Routh-Hurwitz
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Χαρακτηριστική εξίσωση
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