COMPOSITE MATERIALS DESIGN

1. Basic Concepts
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What's a composite material

Basic Concepts

A composite is a new material formed by the combination of two or
more distinct materials to form other material with enhanced properties

Examples:

natural composites

* wood consists of cellulose fibers in a lignin matrix

* bone consists as fiberlike osteons embedded in an interstitial bone matrix

Modern manmade composites

« fiberglass boats are made of a UP reinforced with glass fibers

* hibrid composites- epoxy resin with kevlar and carbon fiber
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What's a composite material

Basic Concepts

Composites are formed by the combination of two or more components
to achieve properties : mechanical, chemical, electrical, that are
superior to those of the constituents.

* fibres: provide most of the stiffness and strenght

* matrix: binds the fibers together providing load transfer between them
and between the composite and the external loads and supports

» design remarks: Unlike conventional materials the properties of the
composites can be designed simultaneously with the structural aspects.
Composite properties can be varied continously over a broad range of values,
under the control of the designer.

« Micromechanics: predict very well some mechanical properties of
composites, using the combination of fibers and matrix properties
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Why composite materials

Basic Concepts

Composites make up a very broad and important class of
engineering materials. World annual production is over 12
million tonnes and the market has in recent years growing at 8-
12% per annum. Composites are used in a wide variety of
applications. Furthermore, there is considerable scope for
tailoring their structure to suit the service conditions This
concept is well illustrated by biological materials such as wood,
bone, teeth and hide; these are all composites with complex
internal structures designed to given mechanical properties well
suited to performance requirements. Adaptation of
manufactured composite structures for different engineering
purpouse requieres input from several branches of science.
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Why composite materials?

Basic Concepts
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Why composite materials?

Basic Concepts

MECHATRONICS
December 2007

Spacilic Tensile Strangth

SPECIFIC TENSILE STRENGHT

2000
1800
1600
140
120H}
1000

B0

GOD

400

20 I

1 L K
0 | l | T - l T | 1

Woods AL Alloys TRanium  Sipel "F-Glak:E; B-Ghs ﬂ.l-'llil"ll! M5 Caibon 1M Carion
Compaosile Composile Compisiie Composie Compsie

Specific Tensile Strength of Commaon Structural Materials

xavier.colom@upc.edu



Why composite materials?

Basic Concepts
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Polymer Matrix Composites

Basic Concepts
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Polymer Matrix Composites

Basic Concepts
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Polymer Matrix Composites

Basic Concepts
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Basic Concepts
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Comparison with Other Structural Materials

Basic Concepts ENERGY CONTENT versus COST
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How design a composite material?

Basic Concepts
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How design a composite material?

Basic Concepts

Recognition of a need design begins by recognizing a need. Satisfying
this need becomes the problem of the designer
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vertical stabilizer: Kevlar/carbon/glass
number of metal components divided

by 20
rudder:
Kevlar/carbon
. flap fairing
Basic Conce horizontal stabilizer Kevlar .
reinforcement: Kevlar
{19 kg instead of
26 kg of metal)
air conditioning
F ; components: Kevlar.
flaps, ailerons, spoilers °“°o,, .| 29 kg instead of 43 kg
.-"’.

main landing gear - .
hatch and fairing i
T T—— | front landing gear hatch i
carbon/carbon karman: Kevlar 1.8 kg/m? radome: glass
top of vertical stabilizer (Kevlar/glass) top of the rudder
(no carbon to avoid lightning strike) {Kevlar)
&
floors leading edge of vertical
stabilizer (Kevlar/carbon
/glass)

wvertical stabilizer edge
trusses: (Kevlar/carbon/glass)
light alloy: 2 kg
carbon: 800 g

rudder
(Kevlar/carbon/glass)
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Karman vertical stabilizer
Decembel (Kevlar) trailing edge: Kevlar



How design a composite material?

Basic Concep Engine Compnnents

| INLET GUIDE VANE I
| = Carbon FiberEpony |
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EXHAUST FLAP
| * Carbon FiberPMR-15

INLET HOUSING
| = Carbon Fiber/PMA-15

/

NDSE COMNE
= Carbon FiberPMA-15
GUIDE VANE
» Carbon FiberPMR-15 ELECTRONICS HOUSING
= Titanium = Carbon Fiber/BMI
= Polyimide Honeycomb
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How design a composite material?

Problem definition / specifications The designers, with the concurrence
of the user and other parties involved (marketing, etc..) defines the problem
in engineering as well as in layman’s term, so that every one involved
understands the problem.

Basic Concepts

20/40 mm
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Inner Flange:
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140/160 mm
Web*:
1,9mm / 3mm

Outer Flange
3mm/4.1mm

—>
xavier.colom@25/4o mm 18

December 2007



Basic Concepts

MECHATRC( S
December 2007

How design a composite material?

4

Brainstorming / design concepts Syntesis is the selection of the optimum

solution among the many combinations

+ proposed. Synthesis, and design relies on
- analysis to predict the behaviour of the
synthe5|s product before one is actually fabricated

COATING

L-8HAPED
JOINING FIECE
BETWEEN
FUSELAGE
FEAME AND
COATING

L-5HAPED
JOIMING FIECE

FUSELAGE
FEAME

—

FURELAGE
FRAME
RIGID JOINT

Simple Joining L-shaped Piece:

X displacements are constrained on nodes
corresponding to the contact surface.

Rigid Joining L-shaped Piece:

*X,Y and Z displacements constrained on
nodes corresponding to the contact surface.
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How design a composite material?

Analysis / Experiments Local Optimitzation Analysis uses mathematical models
to construct an abstract representation of the reality from which the designer can
extract information about the likely behaviour of the real product. The optimized solution
Is then evaluated against the performance criteria set forth in the definition of the
problem

Basic Concepts

Maximum value

0.4815 at node 79204
5.7310E-06 at node 47301

Minimum value

UVARMZ VALUE

+5.73E-08
.E +3.55E-02
+7.10E-02

+1.07E-01
+1.42E-01
+1.78E-01
+2.13E-01
+2.4%9E-01
+2.84E-01
+3.20E-01
+3.55E-01
+3.91E-01

l +4.26E-01
+4.682E-01

.

An iterative process takes place as depicted in previuos/next organigram
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How design a composite material?

Basic Concepts
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How design a composite material?

Evaluation of Mechanical properties

Basic Concrn*- Stiff
m K Strong
~— — Tough
Light

Not stiff enough (need bigger E)

Not strong enough (need bigger oy )

Not tough enough (need bigger Kic)

Too heavy (need lower p)

S
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How design a composite material?

Materials information for design
Basic Concepts

What do we need to know about materials to design a product?

Data Statistical Selection of Economic analysis
capture analysis material and process and business case
Mechanical Properties
Bulk Modulus 41 - 4.6 GPa
Compressive Strength 55 - 60 MPa
Ducti_lity_ ) 0.06- 0.07
—> e T e
Fracture Toughness 23 - 2.6 MPa.m2
Hardness 100 - 140 MPa
Loss Coefficient 0.009- 0.026
Modulus of Rupture 50 - 55 MPa
Poisson's Ratio 0.38 - 0.42
Shear Modulus 0.85 - 0.95 GPa
Tensile Strength 45 - 48 MPa
Young's Modulus 25 - 2.8 GPa
Test Test data Design data Potential Successful
applications applications
N— 7 S— —
Ny Ny
Characterisation Selection and implementation
MECHATRONICS xavier.colom@upc.edu 23
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Stress o

Stress o

How design a composite material?
Mechanical properties

Ductile materials

/

v\Young’s modulus, E

Elastic limit,oy

Strain €

Brittle materials

Tensile (fracture)
strength, o

Young's

ha modulus, E

Strain ¢
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General

Weight: Density p, Mg/m3
Expense: Cost/kg C,, $/kg
Mechanical

Stiffness:  Young’s modulus E, GPa
Strength:  Elastic limit 6, , MPa

Fracture strength: Tensile strength o, , MPa
Brittleness: Fracture toughness K., MPa.m'/2

Thermal
Expansion: Expansion coeff. a, 1/K
Conduction: Thermal conductivity A, W/m.K

Electrical

Conductor? Insulator?

xavier.colom@upc.edu

Thermal expansion

A

Thermal strain ¢

—(g—
l ’

w_EXxpansion
coefficient, a

Temperature, T

Thermal conduction
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T

1 A 0

T

Area

Heat flux, Q/A

/ e Q joules/sec

w._ Thermal
conductivity, A

(T, To)x
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Table 1.1 Properties of Commonly Used Resins

Price of Previous Price of Composite

Application Construction Construction
65 m’ reservoir for Stainless steel + 0.53

chemicals installation: 1.
Smoke stack for chemical  Steel: 1. 0.51

plant
Nitric acid vapor washer Stainless steel: 1. 0.33
Helicopter stabilizer Light alloys + steel Carbon/epoxy (9 kg): 0.45

(16 kg): 1.

Helicopter winch support  Welded steel (16 kg): 1.  Carbon/epoxy (11 kg): 1.2
Helicopter motor hub (Mass: 1): 1. Carbon/Kevlar/epoxy

(mass: 0.8): 0.4
XY table for fabrication of ~ Cast aluminum: Rate of ~ Carbon/epoxy honeycomb

integrated circuits fabrication: 30 platesthr  sandwich: 55 plates/hr
Drum for drawing table Speed of drawing: 15 to  Kevlar/epoxy: 40 to
30 cm/sec 80 cm/sec
Head of welding robot Aluminum: Mass =6 kg Carbon/epoxy: Mass =3 kg
Weaving machine rod Aluminum: Rate = 250 Carbon/epoxy: Rate =350
shots/minute shots/minute
Aircraft floor (Mass =1): 1. Carbon/Kevlar/epoxy

(mass: 0.8): 1.7




Viscous plastic behavior

Basic Concepts
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Basic Concepts

T=cte
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Maxwell Model (Stress Relaxation)

Basic Concept
{A) ELASTIC (B) VISCOELASTIC
€ APPLIED
Eg €4
o RESPONSE
O¢ ]
2y
WL |
|
o
TIME (t) TIME (t)
o=cooe-t/dl 60l=nl/E1 y=(oc0/E1l)+(c0/nl)t 0=0.3700 pert=461
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Kelvin-Voigt Model or Creep Deformation (Slow fluency)

Basic Concepts

T
T=cte yo

I o
: X T=+oo

o=cte W

t t
- Ll
o =Ey, ¥=yl-e") s

Y = 0.63y, para t =6,
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Burgers Model

Basic Concepts
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Burgers Model

Basic Conce

(o /m)t+(o,/E,)(1-e192)
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The concept of load transfer

To understand the mechanical behavior of composite we need to know the

Basic Concepts . i : .
concept of load sharing between the matrix and the reinforcing phase

There are four main direct loads that any material in a structure has to
withstand: tension, compression, shear and flexure.

Tension

The figure below shows a tensile load applied to a composite. The response of
a composite to tensile loads is very dependent on the tensile stiffness and
strength properties of the reinforcement fibers, since these are far higher than
the resin system on its own.

MECHATRONICS xavier.colom@upc.edu 32
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The concept of load transfer

Basic Concepts

Compression

The figure below shows a composite under a compressive load. Here, the
adhesive and stiffness properties of the resin system are crucial, as it is the
role of the resin to maintain the fibres as straight columns and to prevent them
from buckling.

>
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Basic Concepts

Tension Compression
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The concept of load transfer

Basic Concepts

Shear

The figure below shows a composite experiencing a shear load. This load is
trying to slide adjacent layers of fibres over each other. Under shear loads the
resin plays the major role, transferring the stresses across the composite. For
the composite to perform well under shear loads the resin element must not
only exhibit good mechanical properties but must also have high adhesion to
the reinforcement fibre. The interlaminar shear strength (ILSS) of a composite
Is often used to indicate this property in a multi-layer composite (‘laminate’). .

) // i
/// 7 <—
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The concept of load transfer

Basic Concepts

Flexure

Flexural loads are really a combination of tensile, compression and shear
loads. When loaded as shown, the upper face is put into compression, the
lower face into tension and the central portion of the laminate experiences
shear.

MECHATRONICS xavier.colom@upc.edu
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Relation between mechanical parameters

Basic Concepts

compression

Shear load

elastic

poisson

MECHATRONICS
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E 2 G(1+v) 1 E
K= = =
3(1-2v) 3 1-2v 3 3-E/G
E 3 K(1-2v) E
G = = =
2(1+v) 2 1+v 3- E/3G
3G
E=2G(1+v)=3K(1-2v)=
1+G/3K
1 E 1 E 1-2G/3K

V= - = =
2 6K 2 G-1 2+2G/3K
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Poisson’s coeficient (V)
Analysis Comp
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Tensile  Tensile Max.
Density Modulus Strength Specitic Specitic  Service
(p) (E) () Modulus Strength  Temp.
Material (g/cc) (GPa) (GPa) (E/p) (cr/p) (°C)
Metals
Cast iron, grade 20 7.0 100 0.14 14.3 0.02 230-300
Steel, AISI 1045 hot rolled 7.8 205 0.57 26.3 0.073 500-650
Aluminum 2024-T4 2.7 73 0.45 27.0 0.17 150-250
Aluminum 6061-T6 2.7 69 0.27 255 0.10 150-250
Plastics
Nylon 6/6 1.15 2.9 0.082 252 0.071 75-100
Polypropylene 0.9 14 0.033 1.55 0.037 50-80
Epoxy 1.25 3.5 0.069 2.8 0.055 80-215
Phenolic 1.35 3.0 0.006 2.22 0.004 70-120
Ceramics
Alumina 3.8 350 0.17 92.1 0.045  1425-1540
MgO 3.6 205 0.06 56.9 0.017 900-1000
Short fiber composites
Glass-filled epoxy (35%) 1.90 25 0.30 8.26 0.16 80-200
Glass-filled polyester (35%)  2.00 15.7 0.13 7.25 0.065 80-125
Glass-filled nylon (35%) 1.62 14.5 0.20 8.95 0.12 75-110
Glass-filled nylon (60%) 1.95 21.8 0.29 11.18 0.149 75-110
Unidirectional composites
S-glass/epoxy (45%) 1.81 39.5 0.87 21.8 0.48 80-215
Carbon/epoxy (61%) 1.59 142 1.73 89.3 1.08 80-215

Kevlar/epoxy (53%) 1.35 63.6 1.1 47.1 0.81 80-215



Analysis Comp
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Analysis Comp
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Analysis Comp
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How design a composite material?

sasic concepts M aterials, Processes and Shapes

/- Deformation \

/- Ceramics
* Moulding * Glasses
« Powder methods » Polymers
e Casting * Metals
. g/lachinir?g f |  Elastomers
e Composite forming « Composites
\- Molecular methody MATERIALS K P

Natural materials/

4 )

e Axisymmetric
Prismatic

Flat sheet
Dished sheet
3-D solid

3-D hollow /
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How design a composite material?

Basic Concepts

i ’.— Diamond
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Materials\Ceramic
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Materials;\Metal

Materials\Polymer

Material Class
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How design a composite material?

Relationship between different materials
Basic Concepts

Steel
Copper ‘ ,
: |
o I I/ | CFRP
) I I/
g I Alumina | | /I |
= S
S  |Aluminum I GFRP
| R /
[ Glass Fibreboard
=4 ! / PP
S Lead /
)
> PTFE
/
Metals Polymers Ceramics | Composites
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How design a composite material?

Basic Concepts

Young's modulus (GPa)

1000—

100

] Low alloy steel

High carbon steel

wcC
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Stainless steel

/ T| aIons

/
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Al-SiC Composite
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111
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0.01

1e-003+

1le-004

7 Cu- aIons . /CFRP
Zn-alloys / Glass Cerami |c
Al-alloys / Acetal, POM A
Y Silica glass
Mg—alloys— Polyester rlgld Sodal I | KFRP
oda-Lime glass | GERP )
PUR Plywood
1 PE
PTFE )
lonomer
EVA——
Polyurethane —;
Natural Rubber (NR) —
Neoprene ~—
Metals Polymers Ceramics & glass Composites
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How design a composite material?

100
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How design a composite material?
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DFM: Design for Manufacturing

At Storage Technology, a new assembly using DFM that costs 86%
less, reduced part count from 100 to 36. DFM applied to large
hydraulic cylinders at Caterpillar, Inc. produced significant cost
reduction. Then, at Xerox, DFM was used to re-design a paper feed
guide to go from five parts plus hardware to one part and snap fits.

Standardized components at IBM help expedite product
development.
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Fundamentals of Manufacturing Cell Planning

The ability to effectively plan a manufacturing cell is a fundamental skill
needed by every supervisor, team leader, and manufacturing engineer,
This video is based upon a proven and widely used method called
Systematic Planning of Manufacturing Cells (SPMC). Together these
materials comprise a ready to use kit for introducing, expanding, and
improving the use of cells in your plant.
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