Inter-Integrated Circuit (I2C) Bus Overview

m Applications
e Peripheral bus (to single-chip controller devices)

e Low-cost (simple bus, minimum hardware)

e Minimum pin resources (two signals)
o Low speed (serial bus)

W Typical configuration:

+Vpp +VpD
pC nC LCD
Rp Rp A B ADC Driver PROM
A 6 O I O I ey
—‘ \ 4 L4 L 4 ® 4 SDA
12C Bus-1
Signalling

® Two bidirectional signals are defined
e SDA: Serial data '
e SCL: Serial clock

W Electrical interface

e Devices drive signals using open-collector drivers
e A pull-up resistor is used on each line
e Signals are high unless driven low by at least one device (wired-AND)

Cin

Cout ~DO—{

Din

Dout —[>O—)

o

+Vob +VbD
Rp| | Rp
SCL
SDA

12C Bus-2

Signalling (continued)

R Bit representation
e Data value is carried on SDA
e Logical 1is Vpp (high), but Vo voltage is implementation specific
e Logical 0 is ground (low)

B Timing

e SCL provides clock to indicated valid bit
e Data on SDA must remain valid during the high period of SCL

sbA >

SCL

data
may
change

>

data
stable

>
/ N/ \

Signalling (continued)

12C Bus-3

B Framing is needed to mark the beginning and end of a transfer
e Length fields

e Special characters

e Special signal combinations (used on 12C Bus)
B Start condition (S)

e High-to-low transition on SDA while SCL is high

e Bus is considered busy after a start condition

e Re-starts may also occur
B Stop condition (P)

e Low-to-high transition on SDA while SCL is high

e Bus is considered released (after a delay) following a stop condition

SDA

SCL

start

S

data transfer

/

NN
Yard

\

stop

7

S

NN
Vv s

ST

P

[2C Bus-4

Data Transfer

B Byte format
e Data transferred in byte (8-bit) units
e Most significant bit sent first
B Acknowledgment (from receiver)
e Follows each byte
e Low is acknowledge, high is negative acknowledge

12C Bus-5
Synchronization

B The wired-AND clock is used for synchronization
e A bus master generates the clock
e A bus slave can hold the clock low until it is ready
B Bit-level synchronization
e Slave device can extend the length of each low clock period

SDA Data Data

SCL []
Cout (Master) | L |
Cout (Slave) [— l

12C Bus-6

Synchronization (continued)

1 Byte-level synchronization

e Slave devices can hold SCL low after byte received and the
acknowledge bit is sent

e Provides time for slave to process the byte

Isb msb
SDA | B6 | B7 | B8 |ACK B1 B2

Cout (slave)

12C Bus-7
Arbitration

| The 12C Bus allows multiple masters

e Master: device that initiates a transfer, generates clock signals, and
terminates a transfer

e Slave: device addressed by a master
I Devices may be
e Only a master
e Only a slave
e Sometimes a master and sometimes a slave
I Arbitration ensures that if more than one master attempts to control the
bus
e Only one device is allowed to control the bus
e Data is not corrupted by the contention
I Basis for arbitration

e Device cannot attempt to control the bus if another device’s start
condition has been detected until the controlling master sends a stop
condition

e Wired-AND data line used to detect “collisions”

12C Bus-8

Arbitration (continued)

B Suppose two (or more) masters send a start condition at about the same
time
e Both will attempt to control the bus
B Arbitration takes place on data bus (SDA)
e As long as both send the same bit, there is no data corruption
e If one sends a 1 and the other 0, then the 0 is send (wired-AND)
e The device sending the 1 loses arbitration

_—- device 2 wins

—
-
scL _/ _/ /| /S \

12C Bus-9

Addressing

I Addresses are seven bits long and uniquely identify a device

e Addresses are assigned by a standards committee

e Parts of addresses may be programmed at system reset

+ Permits multiple devices of the same type

I Address is sent by master as the first byte following a start condition
I 8th bit of address selects operation

e Read (51): Master receives, slave transmits

o \Write (=0): Master transmits, slave receives
I Addressed slave device responds with an acknowledgment

o7]
address%A

12C Bus-10

Modes of Operation

| Master transmitter
e Generates stop and start conditions
e Generates clock signal
e Writes data to bus
I Master receiver
e Generates stop and start conditions
e Generates clock signal
e Reads data from bus
e Generates acknowledge bits
I Slave transmitter
e Writes data to bus
e Can “stretch” low clock periods
I Slave receiver
e Reads data from bus
o Generates acknowledge bits
e Can “stretch” low clock periods

12C Bus-11

Start Procedure for “Low-Speed Mode”

B Slower devices may require extra time to prepare for a transfer
B A special start sequence is used

e Master sends start condition

e Master sends start byte (00000001)

e There is a dummy acknowledge bit

e Master sends repeated start condition

e Transaction continues as normal

- T T S S E T T -
S tS)tyat: A | S, |address -\F;V/ A data | A |...

S = start condition
S, =restart
A = acknowledge

12C Bus-12

I2C Bus Transaction

A = acknowledge
P = stop condition

- T TR O 2 F TR I Y-S U A - N N
S Ztyat: A S, address va/ A data A data |A|P

5CL

S start byte A

NS

address

A AR

A | data byte(s)| | A P

12C Bus-13

12C Bus Timing (Slow-Speed Mode)

P S S,
SDA L ’
- : :/ —//_./
' —» —| | — <
tsur tr te tHD;sTA
/ R——
SCL
I t '
tiosta © tow thieH tsu;DAT SU;STO
<—-— .<.._
tHD;DAT tsusTA

(See EE 4536 Laboratory Handbook)

12C Bus-14

12C Bus Interface for MCS-51 Microcontrollers

1 Hardware controller required for high speed interface
I Low speed interface may be implemented in software using port pins
I SDA and SCL interface using Port O

e Port O is open-drain, so would be ideal for SDA and SCL

e Port 0 is not available in expanded mode, an alternative is needed
B Use four pins of Port 1

e SCL_IN: Sense SCL

e SCL_OUT: Drive SCL through an open-collector driver (7407)

e SDA_IN: Sense SDA

e SDA_OUT: Drive SDA through an open-collector driver

12C Bus-15

Hardware Interface

SCL SDA
8031
—] SCL_IN
P1.0[* ®
- SDA_IN
P11 *
once for entire bus
SCL_OuUT |
P1.2 07 +5V +5V
SDA_OUT |
P1.3 07 —® Rp| |Rp
®

12C Bus-16

Master Transmit Function

Poll bus to see if free state exists
e track START conditions from other masters, or
e monitor for clock activity over maximum idle interval
Generate START condition on bus
Send start byte (00000001) and allow dummy acknowledge (=1)
Generate START condition on bus (re-start)
Send slave address with write operation (=0)
e Expect acknowledge from addressed slave (=0)
e Monitor for bit mis-match for arbitration
Send data byte(s)
e Expect acknowledge from addressed slave (=0)
e Generate clock for data and acknowledge
e Monitor for bit mis-match for arbitration
Generate a STOP condition and release bus

12C Bus-17
Slave Receive Function

Detect START condition

Discard start byte and detect START condition (re-start)

Receive the address byte, compare to device address
e Receive data only if addressed and write active (=0)
e Ignore rest of transaction if not addressed

B Generate acknowledge bit (=0) if addressed
B Read data byte(s) from bus

e Store/process 8 bits of data

e Generate acknowledge bit (=0)

o Master generates clock, but slave can stretch low periods
Detect STOP condition as ending the transaction

12C Bus-18

Master Receive Function

Poll bus to see if free state exists
e track START conditions from other masters, or
e monitor for clock activity over maximum idle interval
Generate START condition on bus
Send start byte (00000001) and allow dummy acknowledge (=1)
Generate START condition on bus (re-start)
Send slave address with read operation (=1)
e Expect acknowledge from addressed slave (=0)
e Monitor for bit mis-match for arbitration
Receive data byte(s)
e Generate acknowledge bit (=0)
e Generate clock for data and acknowledge
e Monitor for bit mis-match for arbitration
Generate a STOP condition and release bus
e Master controls how many bytes are transferred

12C Bus-19

Slave Transmit Function

Detect START condition
Discard start byte and detect START condition (re-start)
Receive the address byte, compare to device address
e Transmit data only if addressed and read active (=1)
¢ Ignore rest of transaction if not addressed
Generate acknowledge bit (=0) if addressed
Transmit data byte(s) from bus
e Store/process 8 bits of data
e Receive acknowledge bit from host, stop transmit if negative (=1)
e Master generates clock, but slave can stretch [ow periods
Detect STOP condition as ending the transaction

12C Bus-20

Example: Send START Condtion

B Master generates a START condition to begin a bus transaction

B |ssues
e Arbitration

e Signal values (SCL and SDA)

e Timing
W Arbitration

e Master attempts to send START only if bus is idle
e Arbitration may still be lost if another device generates START first

e Detected by SCL being low before this device drives it low

Arbitration not lost

Arbitration lost

[2C Bus-21

Example: Send START Condtion (continued)

B Signal values

e SDA asserted (pulled low)
e Then, SCL asserted (pulled low)

B Timing

e Bus must be idle for time tsuE before new transmission can start
(not really part of the send START condition function)

e Hold time of typ.g7a Must occur after SDA is asserted before SCL is

asserted

SDA

<~ Bur —*

+ thp.sta ™™

SCL

12C Bus-22

Example: Send START Condtion (continued)

SENDS Subroutine (Master function)
Function: Send start condition on I2C bus
Outputs: LOST_ARB FLAG
Notes: * Clock must be high on entry for arbitration to
succeed
* Exits with clock low if arbitration succeeds

ENDS: clr LOST_ARB . ; Clear lost arbitration flag
Inb SCL_IN,sfail ; Arb fails if clock or data low
jnb SDA_IN,sfail
clr SDha_OUT . ; SDA := LOW
mov R7,#THD STA ; Delay for tHD.STA (start hold time)
lcall DELAY
jnb SCL_IN,sfail ; Arb fails if clock already low
clr SCL_OUT ; SCL := LOW
ret ; Start condition sent, return
fail: setb SDA_OUT ; Release data if arbitration fails
setb LOST_ARB ; Set status flag
ret ; Arbitration failed, return
1C Bus-23

Example: Release the Clock

B The clock (SCL) is released (set to high) by either a master or slave after

itis asserted (set to low) by that device
B Synchronization
e This device releases its control of clock (sets SCL_OUT high)

e Clock is not considered released (SCL_IN high) until all devices
release it

SCL_OUT 4/ released
SCL_IN /|

; RELESCL Subroutine

; Function: Release clock to high

RELESCL: setb SCL_OUT ; SCL := HIGH (release
jnb SCL_IN,* ; Wait for all to release
ret ; Clock released to high

12C Bus-24

