 Android Programming
[image:]

Android Programming
[image:]

 ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ (ΠΑΡΑΡΤΗΜΑ ΓΡΕΒΕΝΩΝ)
ΟΝΟΜ/ΝΥΜΟ ΣΠΟΥΔΑΣΤΗ: ΔΟΓΑΝΤΖΑΛΗ ΒΑΣΙΛΕΙΑ
ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΟΚΚΩΝΗΣ ΓΙΩΡΓΟΣ
ΣΤ’ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΙΚΟΥ ΕΤΟΥΣ 2016-2017

Περιεχόμενα
1. SQLite Databases ..3
Ορισμός ενός Σχήματος ..4
Δημιουργία της αρχικής βάσης δεδομένων σας...6
Επίλυση προβλημάτων βάσεων δεδομένων ..10
Γράφοντας στη βάση δεδομένων..12
Χρήση τιμών περιεχομένου……...12
Εισαγωγή και ενημέρωση γραμμών ..13
Ανάγνωση από την βάση δεδομένων ..16
Χρησιμοποιώντας έναν περιηγητή περιγράμματος ...17
Μετατροπή σε αντικείμενα μοντέλου ...20
For the More Curious: Περισσότερες βάσεις δεδομένων...23
For the More Curious: Το πλαίσιο εφαρμογής …..24
Βιβλιογραφία…………………………………………………………………………….25

SQLite Databases
Σχεδόν κάθε εφαρμογή χρειάζεται ένα μέρος για την αποθήκευση δεδομένων για μεγάλο χρονικό διάστημα. Το Android σας δίνει τη δυνατότητα να το κάνετε αυτό: ένα τοπικό σύστημα αρχείων στο χώρο αποθήκευσης μνήμης flash του τηλεφώνου ή του tablet σας.
Κάθε εφαρμογή σε μια συσκευή Android έχει έναν κατάλογο στο sandbox της. Διατηρώντας τα αρχεία στο sandbox τα προστατεύει από την πρόσβαση σε άλλες εφαρμογές ή ακόμη και τα αδιάκριτα μάτια των χρηστών (εκτός αν η συσκευή έχει "ριζωθεί", οπότε ο χρήστης μπορεί να φτάσει σε ό, τι θέλει).
Ο κατάλογος sandbox κάθε εφαρμογής είναι ένα παιδί από τον κατάλογο της συσκευής / data / data diretory που ονομάζεται μετά το πακέτο εφαρμογής. Για το CriminalIntent, η πλήρης διαδρομή προς τον κατάλογο sandbox είναι / data / data /com.bignerdranch.android.criminalintent.
Ωστόσο, τα περισσότερα δεδομένα εφαρμογής δεν αποθηκεύονται σε απλά παλιά αρχεία. Εδώ είναι γιατί: πείτε ότι είχατε ένα αρχείο με όλα τα εγκλήματά σας γραμμένα έξω. Για να αλλάξετε τον τίτλο σε ένα Έγκλημα στην αρχή του αρχείου, θα πρέπει να διαβάσετε ολόκληρο το αρχείο και να γράψετε μια εντελώς νέα έκδοση. Με πολλά εγκλήματα, αυτό θα έπαιρνε πολύ καιρό.
 Εδώ βρίσκεται το SQLite. Το SQLite είναι μια σχεσιακή βάση δεδομένων ανοιχτού κώδικα, όπως η MySQL ή η Postgresql. Αντίθετα από άλλες βάσεις δεδομένων, το SQLite αποθηκεύει τα δεδομένα του σε απλά αρχεία, τα οποία μπορείτε να διαβάσετε και να γράψετε χρησιμοποιώντας τη βιβλιοθήκη SQLite. Το Android περιλαμβάνει αυτή τη βιβλιοθήκη SQLite στην τυπική βιβλιοθήκη του, μαζί με μερικές πρόσθετες κλάσεις βοήθειας Java.
 Αυτό το κεφάλαιο δεν καλύπτει τα πάντα για το SQLite. Για αυτό, θα θελήσετε να επισκεφθείτε το http://www.sqlite.org, το οποίο διαθέτει πλήρη τεκμηρίωση του SQLite. Εδώ θα δείτε πώς λειτουργούν τα βασικά βοηθητικά μαθήματα SQLite του Android. Αυτά θα σας επιτρέψουν να ανοίξετε, να διαβάσετε και να γράψετε σε βάσεις δεδομένων SQLite στον sandbox της εφαρμογής σας, χωρίς απαραίτητα να ξέρετε πού είναι αυτό.

Ορισμός ενός σχήματος
 Πριν δημιουργήσετε μια βάση δεδομένων, πρέπει να αποφασίσετε τι θα γίνει στη βάση δεδομένων. Η Criminal Intent αποθηκεύει μια ενιαία λίστα εγκλημάτων, οπότε θα ορίσετε έναν πίνακα που ονομάζεται εγκλήματα (Εικόνα 14.1).

Εικόνα 14.1 Πίνακας εγκλημάτων
[image:]

Οι άνθρωποι κάνουν αυτά τα πράγματα με πολλούς διαφορετικούς τρόπους στον κόσμο του προγραμματισμού. Όλοι προσπαθούν να επιτύχουν το ίδιο πράγμα: να “στεγνώσουν” τον κώδικα τους. DRY σημαίνει "Μην επαναλάβετε τον εαυτό σας" και αναφέρεται σε έναν κανόνα όταν γράφετε ένα πρόγραμμα: αν γράφετε κάτι κάτω, γράψτε το σε ένα έγκυρο μέρος. Με αυτόν τον τρόπο, αντί να επαναλαμβάνετε τον εαυτό σας σε όλο το μέρος, πάντα να αναφέρεστε σε ένα έγκυρο μέρος για αυτές τις πληροφορίες.
Αυτό μπορεί να γίνει με βάσεις δεδομένων. Υπάρχουν ακόμη πολύπλοκα εργαλεία που ονομάζονται σχεδιαστές σχεσιακών αντικειμένων (ή ORMs για σύντομο χρονικό διάστημα) που σας επιτρέπουν να χρησιμοποιείτε τα αντικειμενικά μοντέλα (όπως το Crime) ως τον One True Definition.
Ξεκινήστε δημιουργώντας μια κλάση για να τοποθετήσετε το σχήμα σας. Θα ονομάσετε αυτή την κλάση CrimeDbSchema, αλλά στο παράθυρο διαλόγου Νέα Κατηγορία εισάγετε τη βάση δεδομένων.CrimeDbSchema. Αυτό θα θέσει το αρχείο CrimeDbSchema.java στο δικό του πακέτο βάσεων δεδομένων, το οποίο θα χρησιμοποιήσετε για να οργανώσετε όλο τον κώδικα που σχετίζεται με τη βάση δεδομένων σας.
Μέσα στο Crime DbSchema, ορίστε μια εσωτερική κλάση που ονομάζεται CrimeTable για να περιγράψετε τον πίνακα σας.

Λίστα 14.1 Καθορισμός τιμοκαταλόγου (Crime DbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";
 }
}

Η κλάση CrimeTable υπάρχει μόνο για να ορίσετε τις σταθερές String που απαιτούνται για να περιγράψετε τα κινούμενα κομμάτια του ορισμού του πίνακα. Το πρώτο κομμάτι αυτού του ορισμού είναι το όνομα του πίνακα στη βάση δεδομένων σας, CrimeTable.NAME.
Στη συνέχεια, περιγράψτε τις στήλες.

Λίστα 14.2 Καθορισμός των στηλών σας πίνακα (Crime DbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";

 public static final class Cols {
 public static final String UUID = "uuid";
 public static final String TITLE = "title";
 public static final String DATE = "date";
 public static final String SOLVED = "solved";
 }
 }
}

Με αυτό, θα μπορείτε να ανατρέξετε στη στήλη με τίτλο "title" με τρόπο ασφαλή για την Java:
CrimeTable.Cols.TITLE. Αυτό καθιστά πολύ πιο ασφαλή την αλλαγή του προγράμματός σας αν χρειαστεί ποτέ να αλλάξετε το όνομα αυτής της στήλης ή να προσθέσετε επιπλέον δεδομένα στον πίνακα.

Δημιουργία της αρχικής βάσης δεδομένων σας

Με το σχήμα που έχετε ορίσει, είστε έτοιμοι να δημιουργήσετε την ίδια τη βάση δεδομένων. Το Android παρέχει μερικές μεθόδους χαμηλού επιπέδου στο Context για να ανοίξει ένα αρχείο βάσης δεδομένων σε μια παρουσία του SQLiteDatabase: openOrCreateDatabase (...) και databaseList ().

Ωστόσο, στην πράξη θα πρέπει πάντα να ακολουθήσετε μερικά βασικά βήματα:

1) Ελέγξτε αν η βάση δεδομένων υπάρχει ήδη.

2) Αν δεν το κάνει, δημιουργήστε το και δημιουργήστε τους πίνακες και τα αρχικά δεδομένα που χρειάζονται.

3) Αν το κάνει, ανοίξτε το και δείτε ποια έκδοση του CrimeDbSchema σας έχει. (Ίσως θελήσετε να προσθέσετε ή να αφαιρέσετε τα πράγματα σε μελλοντικές εκδόσεις του CriminalIntent.)

4) Εάν είναι παλιά έκδοση, εκτελέστε κώδικα για να την αναβαθμίσετε σε νεότερη έκδοση.

Το Android παρέχει στην κλάση SQLiteOpenHelper να χειριστεί όλα αυτά για εσάς. Δημιουργήστε μια κλάση που ονομάζεται CrimeBaseHelper στο πακέτο βάσης δεδομένων σας.

Λίστα 14.3 Δημιουργία βοηθού CrimeBase Helper (CrimeBase Helper.java)

public class CrimeBaseHelper extends SQLiteOpenHelper {
 private static final int VERSION = 1;
 private static final String DATABASE_NAME = "crimeBase.db";

 public CrimeBaseHelper(Context context) {
 super(context, DATABASE_NAME, null, VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 }
 }

Το SQLiteOpenHelper είναι μια κλάση που έχει σχεδιαστεί για να απαλλαγεί από το έργο του ανοίγματος ενός SQLiteDatabase. Χρησιμοποιήστε το μέσα στο Crime Lab για να δημιουργήσετε τη βάση δεδομένων για το έγκλημα.

Λίστα 14.4 Άνοιγμα μιας βάσης δεδομένων SQLite (Crime Lab.java)

public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;
 private Context mContext;
 private SQLiteDatabase mDatabase;
 ...

 private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 mDatabase = new CrimeBaseHelper(mContext)
 .getWritableDatabase();
 mCrimes = new ArrayList<>();
 }
 ...

Όταν καλείτε getWritableDatabase () εδώ, το CrimeBase Helper θα κάνει τα εξής:

1.Ανοίξτετο/data/data/com.bignerdranch.android.criminalintent/databases/crimeBase.db, δημιουργώντας ένα νέο αρχείο βάσης δεδομένων αν δεν υπάρχει ήδη.

2. Εάν αυτή είναι η πρώτη φορά που δημιουργήθηκε η βάση δεδομένων, καλέστε onCreate (SQLiteDatabase) και, στη συνέχεια, αποθηκεύστε τον τελευταίο αριθμό έκδοσης.

3. Εάν δεν είναι η πρώτη φορά, ελέγξτε τον αριθμό έκδοσης στη βάση δεδομένων. Εάν ο αριθμός έκδοσης στο CrimeOpenHelper είναι υψηλότερος, καλέστε onUpgrade (SQLiteDatabase, int, int).

Το αποτέλεσμα είναι αυτό: βάζετε τον κώδικα σας για να δημιουργήσετε την αρχική βάση δεδομένων στο onCreate (SQLiteDatabase), τον κώδικα σας για να χειριστείτε τυχόν αναβαθμίσεις στο onUpgrade (SQLiteDatabase, int, int) και απλά λειτουργεί.

Προς το παρόν, το CriminalIntent θα έχει μόνο μία έκδοση, έτσι μπορείτε να αγνοήσετε την onUpgrade (...). Χρειάζεται μόνο να δημιουργήσετε πίνακες βάσης δεδομένων στο onCreate (...). Για να γίνει αυτό, θα αναφερθείτε στην εσωτερική κλάση CrimeTable του CrimeDbSchema.

Η εισαγωγή είναι μια διαδικασία δύο σταδίων. Αρχικά, γράψτε το αρχικό μέρος του κώδικα δημιουργίας SQL, όπως φαίνεται εδώ:

Λίστα 14.5 Γράφοντας το πρώτο μέρος της onCreate (...) (CrimeBaseHelper.java)

public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeDbSchema.CrimeTable.NAME);
}

Τοποθετήστε τον κέρσορα στη λέξη CrimeTable και πληκτρολογήστε Option + Return (Alt + Enter). Στη συνέχεια, επιλέξτε το πρώτο στοιχείο, Προσθήκη εισαγωγήςγια'com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable'
Όπως φαίνεται στο σχήμα 14.2.

Εικόνα 14.2 Προσθήκη εισαγωγής CrimeTable

[image:]
Το Android Studio θα δημιουργήσει μια εισαγωγή όπως αυτή για εσάς:
...
Εισαγωγή com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable;
public class CrimeBaseHelper extends SQLiteOpenHelper {
...

Λίστα 14.6 Δημιουργία πίνακα εγκλημάτων (CrimeBaseHelper.java)

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeTable.NAME + "(" +
 " _id integer primary key autoincrement, " +
 CrimeTable.Cols.UUID + ", " +
 CrimeTable.Cols.TITLE + ", " +
 CrimeTable.Cols.DATE + ", " +
 CrimeTable.Cols.SOLVED +
 ")"
);
 }

Η δημιουργία ενός πίνακα στο SQLite απαιτεί λιγότερη τελετή από ό, τι σε άλλες βάσεις δεδομένων: δεν χρειάζεται να καθορίσετε τον τύπο μιας στήλης κατά την ώρα της δημιουργίας. Είναι καλή ιδέα να το κάνετε αυτό, αλλά εδώ θα εξοικονομήσετε ένα κομμάτι εργασίας κάνοντας χωρίς αυτό.
Εκτελέστε το CriminalIntent και η βάση δεδομένων σας θα δημιουργηθεί (Εικόνα 14.3). Εάν τρέχετε σε έναν εξομοιωτή ή σε μια ριζωμένη συσκευή, μπορείτε να το δείτε απευθείας. (Όχι σε μια πραγματική συσκευή, όμως - αποθηκεύεται σε ιδιωτικό αποθηκευτικό χώρο, το οποίο είναι μυστικό.) Απλά τραβήξτε Εργαλεία → Android → Android Device Monitor και ανατρέξτε στο / data / data / com.bignerdranch.android.criminalintent / databases /.

Εικόνα 14.3 Η βάση δεδομένων σας

[image:]

Επίλυση προβλημάτων βάσεων δεδομένων

Όταν γράφετε κώδικα που ασχολείται με μια βάση δεδομένων SQLite, θα πρέπει μερικές φορές να τροποποιήσετε τη διάταξη της βάσης δεδομένων. Για παράδειγμα, σε ένα επικείμενο κεφάλαιο θα προσθέσετε έναν ύποπτο για κάθε έγκλημα. Αυτό θα απαιτήσει μια πρόσθετη στήλη στον πίνακα εγκλημάτων. Ο "σωστός" τρόπος για να το κάνετε αυτό είναι να γράψετε κώδικα στο SQLiteOpenHelper για να χτυπήσετε τον αριθμό έκδοσης και, στη συνέχεια, να ενημερώσετε τους πίνακες στο εσωτερικό τουUpgrade (...).

Λοιπόν, ο "σωστός" τρόπος περιλαμβάνει ένα δίκαιο ποσό κωδικού - κώδικα που είναι γελοίο να γράφετε όταν προσπαθείτε μόνο να αποκτήσετε την έκδοση 1 ή 2 της βάσης δεδομένων σωστά. Στην πράξη, το καλύτερο πράγμα που πρέπει να κάνετε είναι να καταστρέψετε τη βάση δεδομένων και να ξεκινήσετε πάλι, έτσι ώστε το SQLiteOpenHelper.onCreate (...) να καλείται ξανά.

Ο ευκολότερος τρόπος να καταστρέψετε τη βάση δεδομένων σας είναι να διαγράψετε την εφαρμογή από τη συσκευή σας. Και ο ευκολότερος τρόπος για να διαγράψετε την εφαρμογή στο απόθεμα Android είναι να μεταβείτε στο πρόγραμμα περιήγησης εφαρμογών και να σύρετε το εικονίδιο του CriminalIntent μέχρι το σημείο όπου αναγράφεται Απεγκατάσταση στο πάνω μέρος της οθόνης. (Η διαδικασία μπορεί να είναι διαφορετική αν η έκδοση του Android είναι διαφορετική από το stock Android). Στη συνέχεια, θα δείτε μια οθόνη παρόμοια με αυτήν που φαίνεται στην Εικόνα 14.4.

Εικόνα 14.4 Διαγραφή μιας εφαρμογής
[image:]

Γράφοντας στη βάση δεδομένων

Το πρώτο βήμα στη χρήση του SQLiteDatabase σας είναι να γράψετε δεδομένα σε αυτό. Θα χρειαστεί να εισαγάγετε νέες σειρές στον πίνακα εγκλημάτων καθώς και γραμμές ενημέρωσης που υπάρχουν ήδη όταν αλλάζουν τα εγκλήματα.

Χρήση τιμών περιεχομένου

Οι σημειώσεις και οι ενημερώσεις σε βάσεις δεδομένων γίνονται με τη βοήθεια μιας κατηγορίας που ονομάζεται ContentValues. Το ContentValues είναι μια κλάση αποθήκευσης κλειδιού-τιμής, όπως το HashMap της Java ή οι δέσμες που χρησιμοποιείτε μέχρι στιγμής. Ωστόσο, σε αντίθεση με το HashMap ή το Bundle, έχει σχεδιαστεί ειδικά για να αποθηκεύει τα είδη δεδομένων που μπορεί να περιέχει το SQLite.

Θα δημιουργείτε περιπτώσεις ContentValues από εγκλήματα μερικές φορές στο CrimeLab. Προσθέστε μια ιδιωτική μέθοδο για να φροντίσετε να μεταφέρετε ένα Έγκλημα σε ContentValues. (Θυμηθείτε να χρησιμοποιήσετε το ίδιο τέχνασμα δύο βημάτων παραπάνω για να προσθέσετε μια εισαγωγή CrimeTable: όταν φτάσετε στο CrimeTable.Cols.UUID, πληκτρολογήστε Option + Return (Alt + Enter) και επιλέξτε Add import for 'com.bignerdranch.android. Criminalintent.database.CrimeDbSchema.CrimeTable ».)

Λίστα 14.8 Δημιουργία περιεχομένου (Crime Lab.java)

public getCrime(UUID id) {
 return null;
}
private static ContentValues getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID, crime.getId().toString());
 values.put(CrimeTable.Cols.TITLE, crime.getTitle());
 values.put(CrimeTable.Cols.DATE, crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED, crime.isSolved() ? 1 : 0);

 return values;
 }
}

Για τα κλειδιά, χρησιμοποιείτε τα ονόματα των στηλών σας. Αυτά δεν είναι αυθαίρετα ονόματα. Καθορίζουν τις στήλες που θέλετε να εισαγάγετε ή να ενημερώσετε. Εάν έχουν ορθογραφικά λάθη ή τυπογραφικά λάθη σε σύγκριση με αυτά που υπάρχουν στη βάση δεδομένων, το ένθετο ή η ενημέρωσή σας θα αποτύχουν. Κάθε στήλη καθορίζεται εδώ εκτός από το _id, το οποίο δημιουργείται αυτόματα για εσάς ως μοναδικό αναγνωριστικό σειράς.

Εισαγωγή και ενημέρωση γραμμών

Τώρα που έχετε ContentValues, είναι ώρα για να προσθέσετε γραμμές στη βάση δεδομένων. Συμπληρώστε το addCrime (Crime) με μια νέα εφαρμογή.

Λίστα 14.9 Εισαγωγή μιας σειράς (Crime Lab.java)

public void addCrime(Crime c) {
 ContentValues values = getContentValues(c);
 mDatabase.insert(CrimeTable.NAME, null, values);
}

Η μέθοδος εισαγωγής (String, String, ContentValues) έχει δύο σημαντικά επιχειρήματα και το ένα χρησιμοποιείται σπάνια. Το πρώτο επιχείρημα είναι ο πίνακας στον οποίο θέλετε να εισαγάγετε - εδώ, CrimeTable.NAME. Το τελευταίο επιχείρημα είναι τα δεδομένα που θέλετε να βάλετε.

Το δεύτερο επιχείρημα ονομάζεται nullColumnHack.

Πείτε ότι αποφασίσατε να καλέσετε την εισαγωγή (...) με ένα κενό ContentValues. Το SQLite δεν το επιτρέπει, οπότε η κλήση εισαγωγής (...) θα αποτύχει.

Εάν περάσατε σε τιμή uuid για nullColumnHack, θα αγνοούσε αυτό το κενό ContentValues. Αντίθετα, θα περάσει σε ένα ContentValues με uuid ρυθμισμένο σε null. Αυτό θα επιτρέψει στο ένθετο (...) να πετύχει και να δημιουργήσει μια νέα σειρά.

Λίστα 14.10 Ενημέρωση ενός εγκλήματος (Crime Lab.java)

public Crime getCrime(UUID id) {
 return null;
}
public void updateCrime(Crime crime) {
 String uuidString = crime.getId().toString();
 ContentValues values = getContentValues(crime);

 mDatabase.update(CrimeTable.NAME, values,
 CrimeTable.Cols.UUID + " = ?",
 new String[] { uuidString });
}
private static ContentValues getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID, crime.getId().toString());
 ...

Η μέθοδος ενημέρωσης (String, ContentValues, String, String []) ξεκινά παρόμοια με την εισαγωγή (...) - μεταβιβάζετε στο όνομα του πίνακα που θέλετε να ενημερώσετε και τα ContentValues που θέλετε να αντιστοιχίσετε σε κάθε σειρά που ενημερώνετε. Ωστόσο, το τελευταίο κομμάτι είναι διαφορετικό, επειδή τώρα πρέπει να καθορίσετε ποιες σειρές ενημερώνονται. Το κάνετε αυτό δημιουργώντας μια ρήτρα όπου (το τρίτο επιχείρημα), και στη συνέχεια καθορίζοντας τιμές για τα επιχειρήματα στην ρήτρα όπου (η τελευταία σειρά String []).

Σε ορισμένες περιπτώσεις ο String μπορεί να περιέχει τον κώδικα SQL. Αν βάζετε αυτόν τον String απευθείας στο ερώτημά σας, αυτός ο κώδικας μπορεί να αλλάξει την έννοια του ερωτήματος σας ή ακόμα και να αλλάξει τη βάση δεδομένων σας. Αυτό ονομάζεται επίθεση SQL injection, και είναι πράγματι ένα κακό πράγμα.

Οι περιπτώσεις εγκλήματος τροποποιούνται στο CrimeFragment και θα πρέπει να διαγραφούν όταν ολοκληρωθεί το CrimeFragment. Έτσι, προσθέστε μια παράκαμψη στο CrimeFragment.onPause () που ενημερώνει το αντίγραφο CrimeLab του εγκλήματος σας.

Λίστα 14.11 Pushing updates (Crime Fragment.java)

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID) getArguments().getSerializable(ARG_CRIME_ID);
 mCrime = CrimeLab.get(getActivity()).getCrime(crimeId);
}

@Override
public void onPause() {
 super.onPause();

CrimeLab.get(getActivity())
 .updateCrime(mCrime);
}

Δυστυχώς, δεν μπορείτε να επαληθεύσετε ότι ο κώδικας αυτός λειτουργεί. Αυτό θα πρέπει να περιμένετε έως ότου μπορείτε να διαβάσετε τα εγκλήματα που ενημερώσατε. Για να βεβαιωθείτε ότι τα πάντα συντάσσονται σωστά, εκτελέστε πάλι CriminalIntent μια φορά πριν προχωρήσετε στην επόμενη ενότητα. Θα πρέπει να δείτε μια κενή λίστα.

Ανάγνωση από τη βάση δεδομένων

Η ανάγνωση των δεδομένων από το SQLite γίνεται με τη μέθοδο ερώτησης (...). Το SQLiteDatabase.query (...) έχει πολλά πράγματα. Υπάρχουν μερικές διαφορετικές υπερφορτώσεις αυτής της μεθόδου. Αυτό που θα χρησιμοποιήσετε μοιάζει με αυτό:

public Cursor query(
String table,
String[] columns,
String where,
String[] whereArgs,
String groupBy,
String having,
String orderBy,
String limit)

Το όρισμα του πίνακα είναι ο πίνακας για την ερώτηση. Τα όρια της στήλης που ονομάζουν τις στήλες για τις οποίες θέλετε τιμές και ποια σειρά θέλετε να λάβετε. Και πού και πού και whereArgs κάνουν το ίδιο πράγμα με την ενημέρωση (...).

Χρησιμοποιήστε το ερώτημα (...) με μια μέθοδο ευκολίας για να το ονομάσετε στο CrimeTable.

Λίστα 14.12 Querying for Crimes (CrimeLab.java)
...
values.put(CrimeTable.Cols.DATE, crime.getDate().getTime());
values.put(CrimeTable.Cols.SOLVED, crime.isSolved() ? 1 : 0);

return values;
}

private Cursor queryCrimes(String whereClause, String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // Columns - null selects all columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);
return cursor;
}
Χρησιμοποιώντας ένα περιηγητή περιγράμματος

Ένας δρομέας αφήνει πολλά για να είναι επιθυμητός ως ένας τρόπος για να δούμε έναν πίνακα. Το μόνο που κάνει είναι να σας δώσει πρώτες τιμές στήλης. Το τράβηγμα δεδομένων από ένα δρομέα μοιάζει με αυτό:

String uuidString = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.UUID));
String title = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.TITLE));
long date = cursor.getLong(
 cursor.getColumnIndex(CrimeTable.Cols.DATE));
int isSolved = cursor.getInt(
 cursor.getColumnIndex(CrimeTable.Cols.SOLVED));

Κάθε φορά που τραβάτε ένα Έγκλημα από έναν δρομέα, πρέπει να γράψετε αυτόν τον κωδικό μια ακόμα φορά. (Και αυτό δεν περιλαμβάνει τον κώδικα για να δημιουργήσετε μια παράβαση Crime με αυτές τις αξίες)

Θυμηθείτε τον κανόνα DRY: Μην επαναλάβετε τον εαυτό σας. Αντί να γράφετε αυτόν τον κώδικα κάθε φορά που θα χρειαστεί να διαβάσετε δεδομένα από έναν Δρομέα, μπορείτε να δημιουργήσετε τη δική σας υποκατηγορία Cursor που φροντίζει αυτό σε ένα μέρος. Ο ευκολότερος τρόπος για να γράψετε μια υποκατηγορία δρομέα είναι να χρησιμοποιήσετε το CursorWrapper. Ένα CursorWrapper σάς επιτρέπει να τυλίξετε έναν Δρομέα που λάβατε από ένα άλλο μέρος και να προσθέσετε νέες μεθόδους στην κορυφή του.

Δημιουργήστε μια νέα κλάση στο πακέτο βάσης δεδομένων που ονομάζεται CrimeCursorWrapper.

Λίστα 14.13 Δημιουργία CursorWrapper (Crime CursorWrapper.java)

public class CrimeCursorWrapper extends CursorWrapper {
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }
}

Αυτό δημιουργεί ένα λεπτό περιτύλιγμα γύρω από έναν δρομέα. Έχει όλες τις ίδιες μεθόδους με το Cursor που περιτυλίγει και καλώντας αυτές τις μεθόδους κάνει ακριβώς το ίδιο πράγμα. Αυτό θα ήταν άσκοπο, εκτός από το ότι καθιστά δυνατή την προσθήκη νέων μεθόδων που λειτουργούν στον υποκείμενο δρομέα.

Προσθέστε μια μέθοδο getCrime () που τραβάει τα σχετικά δεδομένα της στήλης. (Θυμηθείτε να χρησιμοποιήσετε το τέχνασμα εισαγωγής σε δύο βήματα για το CrimeTable εδώ, όπως κάνατε νωρίτερα).

Λίστα 14.14 Προσθήκη της μεθόδου getCrime () (CrimeCursorWrapper.java)

public class CrimeCursorWrapper extends CursorWrapper {
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }

public Crime getCrime() {
 String uuidString = getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title = getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date = getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved = getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 return null;
 }
}

Θα χρειαστεί να επιστρέψετε ένα έγκλημα με ένα κατάλληλο UUID από αυτήν τη μέθοδο. Προσθέστε έναν άλλο constructor στο Crime για να το κάνετε αυτό.

Λίστα 14.15 Προσθήκη constructor εγκλημάτων (Crime.java)

public Crime() {
 this(UUID.randomUUID());
 mId = UUID.randomUUID();
 mDate = new Date();
 }
public Crime(UUID id) {
 mId = id;
 mDate = new Date();
}

Στη συνέχεια ολοκληρώστε το getCrime ().

Λίστα 14.16 Ολοκληρώνοντας το getCrime () (CrimeCursorWrapper.java)

public Crime getCrime() {
 String uuidString = getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title = getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date = getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved = getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 Crime crime = new Crime(UUID.fromString(uuidString));
 crime.setTitle(title);
 crime.setDate(new Date(date));
 crime.setSolved(isSolved != 0);

 return crime;
 return null;
}

(Το Android Studio θα σας ζητήσει να επιλέξετε μεταξύ του java.util.Date και του java.sql.Date. Παρόλο που έχετε να κάνετε με βάσεις δεδομένων, η java.util.Date είναι η σωστή επιλογή εδώ.)

Μετατροπή σε αντικείμενα μοντέλου

Με το CrimeCursorWrapper, η εκτόξευση ενός List <CrimeL> από το CrimeLab θα είναι απλή. Θα πρέπει να τυλίξετε τον δρομέα που παίρνετε πίσω από το ερώτημά σας σε ένα CrimeCursorWrapper, και στη συνέχεια να επαναλάβετε πάνω του καλώντας getCrime () για να βγάλει τα εγκλήματά του.

Για το πρώτο μέρος, ζητήστε τα εγκλήματα (...) για να χρησιμοποιήσετε το Crime CursorWrapper.

Λίστα 14.17 Vending cursorwrapper (Crime Lab.java)

private Cursor queryCrimes(String whereClause, String[] whereArgs) {
private CrimeCursorWrapper queryCrimes(String whereClause, String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // Columns - null selects all columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);
return cursor;
return new CrimeCursorWrapper(cursor);
}

Στη συνέχεια, πάρτε getCrimes () σε σχήμα. Προσθέστε κώδικα σε ερώτημα για όλα τα εγκλήματα, περπατήστε τον δρομέα και συμπληρώστε μια λίστα εγκλημάτων.

Λίστα 14.18 Επιστροφή του καταλόγου εγκλημάτων (CrimeLab.java)

public List<Crime> getCrimes() {
 return new ArrayList<>();
 List<Crime> crimes = new ArrayList<>();

 CrimeCursorWrapper cursor = queryCrimes(null, null);
 try {
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 crimes.add(cursor.getCrime());
 cursor.moveToNext();
 }
 } finally {
 cursor.close();
 }

 return crimes;
}

Οι δρομείς βάσης δεδομένων ονομάζονται δρομείς επειδή έχουν πάντα το δάχτυλό τους σε ένα συγκεκριμένο σημείο ενός ερωτήματος. Έτσι, για να τραβήξετε τα δεδομένα από ένα δρομέα, μεταφέρετέ το στο πρώτο στοιχείο καλώντας το moveToFirst (), και έπειτα την ανάγνωση σε δεδομένα γραμμών. Κάθε φορά που θέλετε να προχωρήσετε σε μια νέα σειρά, καλέστε το moveToNext (), έως ότου τελικά τοAfterLast () σας λέει ότι ο δείκτης σας είναι εκτός του τέλους του συνόλου δεδομένων.

Το τελευταίο σημαντικό πράγμα που πρέπει να κάνετε είναι να καλέσετε κοντά () στον δρομέα σας. Αυτό το κομμάτι της καθαριότητας είναι σημαντικό. Εάν δεν το κάνετε, η συσκευή σας Android θα σας φτιάξει ένα άσχημο αρχείο καταγραφής σφαλμάτων για να σας αποδώσει. Ακόμα χειρότερα, εάν κάνετε μια συνήθεια έξω από αυτό, τελικά θα εξαντληθούν οι ανοιχτοί χειρισμοί αρχείων και η συντριβή της εφαρμογής σας. Έτσι: κλείστε τους δρομείς σας.

Λίστα 14.19 Επανέκδοση του getCrime (UUID) (CrimeLab.java)

public Crime getCrime(UUID id) {
 return null;
 CrimeCursorWrapper cursor = queryCrimes(
 CrimeTable.Cols.UUID + " = ?",
 new String[] { id.toString() }
);
 try {
 if (cursor.getCount() == 0) {
 return null;
 }
 cursor.moveToFirst();
 return cursor.getCrime();
 } finally {
 cursor.close();
 }
}

Αυτό συμπληρώνει μερικά κινούμενα κομμάτια:

• Μπορείτε να εισαγάγετε εγκλήματα, οπότε τώρα λειτουργεί ο κώδικας που προσθέτει το Crime to CrimeLab όταν πατάτε το στοιχείο New Crime action.

• Μπορείτε να αναζητήσετε με επιτυχία τη βάση δεδομένων, έτσι ώστε το CrimePagerActivity να μπορεί να δει και όλα τα εγκλήματα στο CrimeLab.

• Το CrimeLab.getCrime (UUID) λειτουργεί επίσης, έτσι ώστε κάθε CrimeFragment που εμφανίζεται στο CrimePagerActivity να δείχνει το πραγματικό έγκλημα.

For the More Curious: Περισσότερες βάσεις δεδομένων
	
Για μια πιο ουσιαστική εφαρμογή θα θελήσετε να εξετάσετε την προσθήκη των παρακάτω στη βάση δεδομένων σας και την περιγραφή σας:
• Τύποι δεδομένων σε στήλες. Από τεχνική άποψη, το SQLite δεν έχει δακτυλογραφημένες στήλες, ώστε να μπορείτε να τις αποκτήσετε χωρίς αυτές. Η παροχή συμβουλών SQLite είναι ευγενέστερη όμως.
• Ευρετήρια. Τα ερωτήματα σε σχέση με τις στήλες με τα κατάλληλα ευρετήρια είναι πολύ ταχύτερα από τις στήλες χωρίς αυτές.
• Εξωτερικά κλειδιά. Η βάση δεδομένων σας έχει μόνο έναν πίνακα, αλλά τα συναφή δεδομένα θα χρειάζονταν και ξένους βασικούς περιορισμούς.

Η εφαρμογή σας δημιουργεί μια νέα λίστα με όλα τα νέα αντικείμενα Crime κάθε φορά που ερωτάτε τη βάση δεδομένων. Μια εφαρμογή υψηλής απόδοσης θα το βελτιστοποιήσει με την ανακύκλωση των περιπτώσεων εγκληματικότητας ή με την επεξεργασία τους ως κατάστημα αντικειμένων εντός μνήμης.

For the More Curious: Το πλαίσιο εφαρμογής

Τι κάνει το πλαίσιο εφαρμογής ξεχωριστό; Πότε πρέπει να χρησιμοποιείτε το πλαίσιο εφαρμογών για μια δραστηριότητα ως πλαίσιο;
Είναι σημαντικό να σκεφτείτε τη διάρκεια ζωής καθενός από αυτά τα αντικείμενα. Αν υπάρχει κάποια από τις δραστηριότητές σας, το Android θα έχει επίσης δημιουργήσει ένα αντικείμενο εφαρμογής. Οι δραστηριότητες έρχονται και μεταβαίνουν καθώς ο χρήστης περιηγείται στην εφαρμογή σας, αλλά το αντικείμενο της εφαρμογής εξακολουθεί να υπάρχει. Έχει πολύ μεγαλύτερη διάρκεια ζωής από οποιαδήποτε δραστηριότητα.
Το CrimeLab είναι ένα singleton, το οποίο σημαίνει ότι μόλις δημιουργηθεί, δεν θα καταστραφεί μέχρι να καταστραφεί ολόκληρη η διαδικασία εφαρμογής. Το CrimeLab διατηρεί μια αναφορά στο αντικείμενο mContext του. Εάν αποθηκεύσετε μια δραστηριότητα ως αντικείμενο mContext, αυτή η δραστηριότητα δεν θα καθαριστεί ποτέ από τον συλλέκτη απορριμμάτων επειδή το CrimeLab έχει αναφορά σε αυτό. Ακόμα κι αν ο χρήστης έχει απομακρυνθεί από αυτή τη δραστηριότητα, δεν θα καθαριστεί ποτέ.
Για να αποφύγετε αυτή τη σπάταλη κατάσταση, χρησιμοποιείτε το περιβάλλον εφαρμογής έτσι ώστε οι δραστηριότητές σας να μπορούν να έρθουν και να πάνε και το CrimeLab να μπορεί να διατηρήσει μια παραπομπή σε ένα αντικείμενο Context. Πάντα να σκεφτόμαστε τη διάρκεια ζωής των δραστηριοτήτων σας καθώς διατηρείτε μια αναφορά σε αυτά.

Βιβλιογραφία
Android Programming, The Big Nerd Ranch Guide(2nd Edition)
2

image5.emf

image6.emf

image7.emf

image1.jpeg
p- S
l'l

an>=0ID

image2.jpeg
TN W

image3.jpeg

image4.emf

